Synchronized real time audio streaming over ethernet in embedded systems

$\bullet \bullet \bullet$

A thesis submitted for the fulfillment of the degree Master of Science in Information Technology

Indumathi Duraipandian 926386

Agenda

Introduction **Thesis objectives AVB protocol stack Beagleboard platform Prototype design Development Evaluations** Limitations **Conclusion**

Introduction

Ν

	Analog audio connections	Digital general connections
	Audio as electrical signals	USB, Firewire, Thunderbolt etc
+ + + +	No Latency-Prone to noiseSimple to use-Point to point connectionsSynchronization can be achieved easily-Processing required at receiving end to cleanup signal	+ High bandwidth – High latency + Simple to use – No Synchronization
Past		Future
\backslash	Digital audio connections	Audio over Ethernet
	SPDIF, ADAT, AES, DVI, HDMI etc	COBRANET, Ravenna, AES67, Dante and AVB/TSN
+ + +	More bandwidth, i.e. single connection can carry several channels-Higher cost Not portable and 	+ High bandwidth + Low latency + Simple to use + Synchronization

Thesis Objectives

Main goal is to evaluate AVB as a possible candidate for "Synchronized real time audio streaming over Ethernet in embedded systems" which can be listed as the following objectives

- \star Study existing literature regarding current available solutions for AVB.
 - Open Avnu
 - Open AVB
- ★ Implement AVB protocol stack in an embedded system
 - BeagleBoard devices
 - Linux based debian OS
- \star Evaluate the various operational parameters and conclude if the main goal is met.

AVB protocol stack - gPTP

gPTP - Generalized Precision Time Protocol

- → Responsible for synchronizing the clocks of all devices in the network.
- → Propagation delay between every device and it's neighbor is measured.
- → A best master clock is selected automatically.
- → All devices in the network synchronize to the best master's clock by correcting the received time with the measured delay.

AVB protocol stack - AVDECC

AVDECC - AVB Device Discovery, Enumeration, Connection and Control Protocol

- → Discover other AVB devices in the network (AVDECC Discovery protocol -ADP)
- → Enumerate the capabilities of other devices (AVDECC Enumeration and Control Protocol AECP)
- → Manage audio connections between the devices(AVDECC Connection Management Protocol -ACMP)
- → Control the streaming and other features of the connected devices such as volume, mixing, equalizing etc... (if supported)(AVDECC Enumeration and Control Protocol AECP)

AVB protocol stack - MSRP

MSRP - Multiple Stream Reservation Protocol

- Reserve network resources required for a stream such that the required quality of service is achieved.
- Resources are allocated in all devices in the path between talker and all the listeners.

Stream Reservation protocol

AVB protocol stack - FQTSS

FQTSS - Forwarding and Queueing for Time sensitive streams

- → Specifies various priorities for different audio classes.
- → Specifies a credit based traffic shaper which prioritises time sensitive data.

AVB protocol stack - AVTP

AVTP - Audio Video Transfer Protocol

- → Transfer audio video data as chunks in various formats.
- Transfer the presentation time for each media packet indicating at which time the media has to be presented to the user application.

		0 0	1	2	3	4	5	6	5 7	8	9	1 0	1	2	3	4	5	6	7	8	9	2 0	1	2	3	4	5	6	7	8	9	3 0	1
subtype data	00	subtype								sv	v version mr f_s				s_d	tv			sec	luen	ce_r	um	m form					t_specific_data_1				tu	
Stream ID	04 08																	1															
AVTP Time	12		avtp_timestamp																1														
Format Specific	16									1					for	mat	_spe	ci fic_	data	a_2						1							
Packet Info	20		stream_data_length (octets)													format_specific_data_3																	
AVTP Payload	24	-	stream_data_payload (additional header and data - varies by format)																														

Beagleboard platform

BeagleBone Black is a low cost high performance development platform with the following features

- AM335x Siatra Processor. 2000 MIPS @ 1 GHz
- > 500 MB DDR3L @ 800 MHz
- 4 GB embedded MMC onboard
- 2x USB, 1x UART, 1x micro SD card port, 1x HDMI and 1x 10/100 RJ45 Ethernet connector
- 2x 46 pin expansion headers through which up to 4 expansion devices can be connected
- Supports several extension capes through which several new hardware can be attached.

Prototype design

The following modules are developed,

- gPTP Daemon
 - gPTP Implementation
- > AVB ALSA Driver
 - AVTP Implementation
 - AVDECC Implementation
 - MSRP Implementation
- Test Application
 - To test AVB protocol suite

Development

- Build Host : PC running Ubuntu 15.04
- <u>Cross Compiler</u> : GCC Linaro 6.3.1 ARM Linux gnueabihf
- Beaglebone OS : Debian for beaglebone
- Version Control : Git (Hosted at github.com)
- Debugging : Remote terminal through serial header
- <u>gPTP Daemon</u> : Linux user space daemon application
- ALSA AVB Driver : Linux Kernel space virtual audio device driver
- <u>Test Application</u> : Linux user space application
- Audio Cape : CTAG face 2|4 for beaglebone black

Development

Evaluations

gPTP Delay Measurement Stability

Variations in the successive measured delay values from the gPTP daemon in beaglebone black.

gPTP Clock Drift

Variations in the difference between the local clock to the master clock for every periodic sync command.

Evaluations

Plintened deep be and addressed to

Evaluations

- Latency was measured using the test application.
- The latency can be modified by varying the size of the audio buffer inside the ALSA AVB driver.
- The minimum latency measurable was 18.46 ms

The AVB stack developed is able to be detected by a macbook pro computer as a AVB device.

Limitations

- > Maximum of 8 channels and maximum sampling rate of up-to 192kHz is supported.
- > Only one playback and capture stream is possible in parallel.
- The Forwarding and Queuing for Time-Sensitive Streams (FQTSS) improvement for the networking queues are not implemented.
- > Only the AVDECC responder role is implemented, but does not support the AVDECC controller role.

Conclusion

- Synchronized, real time audio streaming is possible in embedded systems using the proposed system.
- Sufficient for consumer applications.
- Might not be suitable for professional applications.

