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Abstract
The CTAG face 2|4 sound card is a hardware platform developed at Kiel University

of Applied Sciences for all audio applications. This board is based on Analog devices
AD1938 audio codec which contains 4 input ADC channels and 8 DAC output chan-
nels. The Linux based audio driver for this board has previously been developed on
open source development platforms like the beagle bone and raspberry pi.

In this thesis, a further audio driver for the Teensyduino embedded platform has
been developed using the open source Teensy audio library. At the time of this writ-
ing, the Teensy audio library offered two stereo I2S input / output channels, however,
the sound card offers four stereo I2S audio outputs channels and two stereo inputs I2S
channels. The AD1938 codec uses TDM encoding and decoding for transmitting and
receiving multiple channels on a serial line. The development of the new audio driver
includes the configuration of AD1938 codec via SPI driver and configuring the Teensy
3.6 micro controller registers to support I2S TDM streaming.

The Audio driver has been developed and tested to receive 8 channel input data
and transmits 4 channel output data at 48kHz sample rate. By connecting two CTAG
sound cards in daisy chain mode with a Teensy, the system can be expanded to 8 input
channels and 16 output channels. The audio driver has also been extended to support
these additional channels as well as supporting both master and slave mode.

The second part of the thesis deals with adding a reverberation effect for audio
received from the audio codec. The Schroeder-Moorer based freeverb algorithm devel-
oped by Jezar is an often used reverb in open source platforms. The freeverb algorithm
is suitable for the embedded system because of its small memory footprint as the decay
time is mostly influenced by algorithmic parameters. A fixed-point implementation
of the freeverb algorithm has been developed for the Teensy audio library for stereo
channels and is tested in real-time.
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Chapter 1

Introduction

1.1 Open source Eco-System

An Open source Ecosystem is a system that can be freely used, modified and shared by
anyone. This system is developed, controlled, modified, reviewed, by general people
and distributed under licenses that comply with open source definition[1].

Open source Initiative (OSI) published a document that describes the open source
definition. The terms mentioned by OSI are [2] free redistribution, the author or license
holder cannot collect royalty on the distribution of program, this program must make
available to all the use , license should allow changes and derived works and must al-
low them to distribute under same terms as the original license, no person or group
must be denied to access the code, License must not specific to a product, licensed soft-
ware cannot restrict other software, license must be technology neutral and software
must follow any non restricted licenses standards (like GNU General Public License
(GPL), Apache Software License, Intel Open Source License, Berkeley Software Distri-
bution (BSD) license etc).

The main purpose behind this approach is that a large group of people collabora-
tively without any financial gain wants to produce more useful and bug free product
for everyone to use. Open source software (OSS) supporters argue that this kind of
approach is faster and efficient and results are better quality. Now a days, even com-
mercial software industries are also attracted to this approach. The Internet has brought
students, hobbyist, developers, and users across the world together as a community to
exchange ideas, discuss the problems and provide the solutions .

Due to a layered software architecture, drivers and middle wares libraries are hid-
ing the hardware details and their configuration details; any user without hardware
knowledge can develop an application using open source hardware platform and can
contribute to open source community.
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1.1.1 Open source operating system

The open source software(OSS) movement started by academicians like Donald Knuth,
Richard Stallman against the commercialization of software has gained momentum in
early 80’s and led to the development of open source GNU operating system. With co-
operation from developers, collaborating over the internet, Linus Torvalds as a student
released the first version of the Linux kernel. The merger of GNU operating system
with Linux kernel formed complete open source operating system. The University of
California, Berkeley developed a UNIX derivative operating system and distributed as
Berkeley Software Distribution(BSD).

The table contains few open source operating system and their licenses

Name Licenses Operating family

Linux GPL/LGPL (GNU
General Public License
/ GNU Lesser General
Public License)

Unix-like

FreeBSD BSD; GPL, LGPL soft-
ware usually included

BSD Unix-like

OpenBSD BSD ( Berkeley Soft-
ware Distribution)

Unix-like

FreeRTOS modified GPL real-time operating sys-
tem kernel

FreeDOS GPL disk operating system
(DOS)

GNU GPL Unix-like
Darwin, OpenDarwin,
PureDarwin

APSL( Apple Public
Source License)

BSD, Unix, Unix-like,
OS X

Haiku MIT ( permissive
free software license
developed by the Mas-
sachusetts Institute of
Technology (MIT))

BeOS(operating system
developed by Be Inc.)

TABLE 1.1: Teensy 3.6 Open source Operating system and their licenses

Open source Linux based platform

The high-speed CPU processors and memory chips availability at a lower price has en-
couraged the companies to develop open source hardware platforms like Beagle bone,
Raspberry pi for Linux operating system.The following are the mostly used open source
hardware platforms by the student community.
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1. BeagleBoard: Texas Instrument along with the electronics parts distributors like
Digi-key and element14 has produced a low power open source single board com-
puter. The primary goal of this educational board is promoting open source hard-
ware in colleges and universities. This board has Texas Instrument’s OMAP3530
system-on-a-chip(SoC) which, includes an ARM Cortex-A8 CPU(720 MHz), Imag-
ination Technologies PowerVR SGX 2D/3D graphics processor and TMS320C64x+
core (520 MHz). This board can also run on different operating systems like Linux,
Ubuntu, Android and Windows CE. The Beagle board has been updated with
CPU, memory, and peripherals over the time. The Beagle board versions are
BeagleBoard-xM, BeagleBone, BeagleBone Black, and BeagleBoard-X15 respec-
tively.

2. Raspberry Pi: It is a single-board computer developed by the Raspberry Pi Foun-
dation with the intent to promote the teaching of basic computer science. It comes
in different models. All the models contain BCM2836 Broadcom SoC with an in-
tegrated ARM CPU and an on-chip graphical processing unit. Recently launched
Raspberry pi 3 brings more powerful and ten time faster ARM Cortex-A53 pro-
cessor compare to first generation of Raspberry pi. Additional features like WiFi
and Blue-tooth makes it most compact and standalone computer [3]. With 1GB
RAM, it can run bigger and powerful applications. It contains four USB and 40
GPIO pins, by using this one can connect many peripheral device.

It runs on Raspbian, a Debian-based Linux operating system. Many other oper-
ating sytems like FreeBSD, Android, Windows 10 IoT Core can also run on Rasp-
berry pi. Raspberry pi with low cost and high capabilities have become the choice
of all levels of programmer.

3. Arduino Yún: The Arduino Yún is a microcontroller board based on the MIPS32
24K and ATmega32U4 CPU and the Atheros AR9331 processor with 400MHz
speed and 64MB (AR9331) and 2.5KB (ATmega) memory. The Atheros proces-
sor supports a Linux distribution based on OpenWrt named Linino OS [4]. It
contains features like Ethernet and WiFi support, USB Port, MicroSD port for ex-
ternal storage, 20 Input/Output pins. This is a type of Arduino board but with an
ability to communicate with the Linux on board thus Arduni Yún offers powerful
network mini computer.

4. Inetl Galileo: It is the first Arduino- boards based on Intel x86 architecture. This
board combines the best of both Linux and an arduino emulator. Galileo is a mi-
crocontroller board based on the Intel R© Quark SoC X1000 Application Processor,
a 32-bit Intel Pentium-class system on a chip. [5]. Galileo is truely an open source,
as schematic diagram and source code is available online and can be downloaded
without any software license.
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Open source microcontroller platforms without operating system

There are open source smaller microcontroller hardware platforms like Arduino based
boards and Teensy for new generation sensors, wearable, low power applications which
don’t need higher memory and have fast booting requirement.

1. Arduino: Arduino is an open-source hardware and software platform company
which produces micro controller boards, add-on boards(shield) and kits for a
wide range of applications. There are Arduino boards for the Internet of thing,
3D printing, wearable, and educational. The Arduino Software (IDE) is a cross-
platform software and it runs on Windows, Macintosh OSX, and Linux operating
systems. There is a very big open source community developing and supporting
various boards.

2. Teensy: A detailed information about teensy is discussed in section 1.2 (Teensy
Eco-System).

3. Adafruit Flora: Adafruit Flora is a wearable electronic platform. It is thin, round,
sewable based on Arduino microcontroller and commonly used in the wearable
project. The latest version of the Flora features with micro-USB and Neopixel
LEDs. It is easy to program and testing. Flora is based on Atmega 32u4 micro-
controller, which powers Arduino Mega and Leonardo.[6] Since it is compatibility
with Arduino, no much modification required and can use the same Arduino IDE.

4. LightBlue Bean: It is low energy Bluetooth Arduino-compatible microcontroller
board. It also contains RGB LED, temperature sensor, and an accelerometer.It is
programmed wirelessly and can be paired with Android or iOS devices. So it is
well suitable for smartphones. It is powered by an ATmega328p microcontroller
with 32KB Flash memory and 2KB SRAM and contains CR2032 coin cell battery
[7].

1.2 Teensy Eco-System

Teensy is a complete USB-based microcontroller development system, in a very small
footprint, capable of implementing many types of projects created by PJRC and de-
signed by the co-owner, Paul Stoffregen. [8]. The Programming is done by means of
the USB port.The teensy board is compatible with Arduino software & libraries. The
open source teensy audio library is distributed under MIT-like licenses. It has few con-
ditions like the copyright notice, development funding notice and the permission notice
should be included in all files of the software.
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Key features[9]

• USB can be any type of device

• Single pushbutton programming

• Easy to use Teensy Loader application

• Free software development tools

• Works with Mac OS X, Linux & Windows

• Tiny size, perfect for many projects

The table 1.2 list the packages [8] available in teensy.

Name Description

framework-arduinoteensy Arduino Wiring-based Framework
framework-mbed mbed Framework
tool-teensy Teensy Loader
toolchain-atmelavr avr-gcc
toolchain-gccarmnoneeabi gcc-arm-embedded

TABLE 1.2: Packages in Teensy

History of Teensy

Teensy has developed many powerful micro controller functions in the open source
environment. The teensy’s hardware and advance libraries of Arduino can be used to
develop more powerful features. Similar to any other platform, teensy has also went
through the iteration and now it is up to the 3rd generation of teensy board.

Teensy 1.0: It was introduced in late 2008 and was the first Arduino compatible
board developed with USB communication feature. It offers 12 Mbps native USB.

Teensy 2.x: The Teensy 2.0 contains an AVR ATMEGA32U4 8bit microcontroller, 16
MHz clocks (16 MIPS), 25 Input/output lines and a USB client port. It added a new fea-
ture to support USB Keyboard, Mouse, and MIDI and hence became very popular for
many enthusiast keyboard projects, either as a keyboard controller ( eg the Phantom,
tenkeyless keyboard ). By using teensy 2.0, Paul created a code of stream USB pack-
age for LEDs and this was used to build great LED projects. The Teensy++ 2.0 with an
AT90USB1286 chip that has 46 I/O lines.

Teensy 3.x: The Teensy 3.0, Teensy 3.1 and Teensy 3.2 have microcontrollers with
ARM Cortex M-series CPUs (48Mhz, 72MHz, 72MHz clock respectively). Compare to
other teensy’s, this version of teensy has faster processor and memory increased to four
times. Because of increased memory size, many audio applications are developed as an

https://www.arduino.cc/reference/en/
https://www.mbed.com/en/
https://www.pjrc.com/teensy/loader.html
https://gcc.gnu.org/wiki/avr-gcc
https://launchpad.net/gcc-arm-embedded
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audio library. The latest version is teensy 3.6 and details are explained in section 2.8.

Teensy LC: It has impressive capabilities and makes the project must simpler and it
is ideal for ’Internet of Things’ projects. It features an ARM Cortex-M0+ processor at 48
MHz, 62K Flash, 8K RAM, 12-bit analog input and output, hardware Serial, SPI & I2C,
USB, and a total of 27 I/O pins.

1.2.1 Teensy Audio Library

The Teensy audio library consists of a set of objects that enable recording, processing,
and playback of audio sampled at 44.1 kHz[10]. When the teensy is operating in I2S
slave mode, the audio library can be configured to work at sampling frequencies like
48 KHz, 96 KHz by changing the define AUDIO SAMPLE RATE EXACT. The Objects
instantiate particular audio functionalities, e.g., a waveform synthesizer, reverb, I2S
input, I2S output and finite-impulse-response (FIR) filters etc. By creating a new object,
a new functionality can be added. A cascade of objects forms a processing chain that
performs a set of operations on inputs to produce the desired output[10]. For example,
two or three I2S objects can be given to mixer, which produces the desired output ( as
shown in figure 1.1 ). The audio library defines each object in the chain to operate on
128 audio buffered samples.

FIGURE 1.1: Cascading of objects

1.2.2 Audio Connections and memory

The important function of Teensy audio library related to audio stream connects are
described in the table 1.3 [11]
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Function Description

AudioConnection myConnec-
tion(source, sourcePort, destina-
tion, destinationPort)

Route audio data from the source object’s sour-
cePort, to the destination object’s destination-
Port.

AudioConnection myConnec-
tion(source, destination)

Route audio data from the source object’s out-
put 0, to the destination object’s input 0.

AudioMemory(numberBlocks) Allocate the memory for all audio connections.
The numberBlocks input specifies how much
memory to reserve for audio data. Each block
holds 128 audio samples

AudioMemoryUsage() Returns the number of blocks currently in use.
AudioMemoryUsageMax() Return the maximum number of blocks that

have ever been used. This is by far the most
useful function for monitoring memory usage.

AudioMemoryUsageMaxReset() Reset the maximum reported by AudioMemo-
ryUsageMax. If you wish to discover the worst
case usage over a period of time, this may be
used at the beginning and then the maximum
can be read.

TABLE 1.3: Audio Connections and Memory

1.3 Scope of Project

This thesis is divided into two parts. First part is to develop a C++ control class to in-
terface CTAG face 2/4 sound card with Teensy 3.6 using the Teensy audio library. It
also extends the existing I2S TDM class present in the teensy audio library to receive
and transmit 16 channels in Teensy I2S slave mode.

The AD1938 codec based CTAG face 2/4 sound card can receive 4 input channels
and transmit 8 output channels. The AD1938 codec registers can be configured using
the SPI interface. The CTAG audio data is transmitted and received to and from the
Teensy using I2S interface. The CTAG sound card has a crystal oscillator which is gen-
erating a clock at 24.576MHz. This generated clock is used to generate I2S clock signals
when configured as I2S master. When two CTAG face 2/4 sound cards are connected in
daisy chain mode the system can receive 8 input channels and transmit 16 output chan-
nels. For the test purpose the input signal from the PC is fed to any one of ADC input
of CTAG sound card and output from any one of DAC’s is connected to the speaker.
The PCM pass-through program controls the routing of which ADC input shall go to
which DAC output.

The second part of the thesis deals with implementation of a Freeverb algorithm
and testing this reverb effect on real-time audio data that is received from the audio
driver. Due to the memory limitation on the Teensy 3.6 board, we can test the reverb
effect on only two channels.
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The Freeverb build blocks like comb filters and all-pass filter are implemented in
fixed-point arithmetic’s to be compatiable with older teensy boards, reduce the CPU
computational and increase the precision. The final mixing of the reverb output (wet)
and direct(dry) signal is implemented using the existing mixer function present in the
audio library. The reverberation effect is analysed by varying the feedback, damping
factors of combo filter and gain of all pass filter.

The performance, latency of audio driver and the memory consumption and CPU
performance of the freebverb is measured.
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Chapter 2

Technical Background

2.1 Pulse-Code-Modulation (PCM)

Pulse coded modulation is the simplest form of pulse modulation. The PCM stream
is a conversion of analog signal both in time and amplitude into a discrete both time
and amplitude digital signal.The operations performed in the modulation of PCM are
sampling, quantization, and encoding. The original signal can be reconstructed from
the quantized samples by a demodulator. The accuracy with which the analog signal
can be reproduced depends in part on the number of bits used to encode the original
signal.

2.2 Inter-IC Sound (I2S)

The Integrated Inter-IC Sound (I2S) serial bus interface standard was developed by
Phillips Semiconductor especially for the transmission of digital audio between two
IC’s. It is a synchronous bus with three serial lines consisting of bit clock, word clock,
and audio data.

As the transmitter and receiver have the same clock signal for data transmission,
the transmitter as the master has to generate the bit clock, word-select signal, and data.
In a complex system where there are more transmitters and receivers, it is difficult to
define the master. So system master controls the audio data flow between the ICs. In
such condition, the transmitter generates the data and act as a slave. Figure 2.1 illus-
trates some simple system configurations and the basic interface timing.

According to the I2S specification [12], the bus consists of basic three lines: contin-
uous serial clock(SCK), word select(WS), serial data(SD) (see Figure 2.1).

2.3 Time Division Multiplexed (TDM) Mode

Time Division Multiplexed method that allows multiple channels of data to be trans-
mitted on a single data line. The equipment that combines and transmits the signals
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FIGURE 2.1: Simple System Configurations and Basic Interface Timing
[12, S.2 Figure 1]

Name Function

SCK Its the output serial clock

WS Defines the period of a sample, either left or right channel. This
value can be set to: 16, 32 (default), 48, or 64. The word select line
indicates the channel being transmitted:

• WS = 0; channel 1 (left);

• WS = 1; channel 2 (right).

It acts like a frame sync in case of multi channel transmission.

SD Serial data is transmitted in two’s complement (Two time-
multiplexed data channels )with the MSB first

TABLE 2.1: I2S signal details

over a signal data line is known as Multiplexer. It accepts the input (data streams) from
each source and divide each signal into units of the same size, and assign the units to
the composite data in a rotating, repeated sequence. At the receiving end, this compos-
ite signal is separated by a equipment called De-multiplexer. The prerequisite for the
successful TDM process is that the transmitter and the receiver have the same number
of audio channels to be transmitted, their sampling depth or the TDMS slot width and
the sampling rate.
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The TDM interface is similar to the 2-Channel Serial Audio Interface, with the ex-
ception that more channels, typically 4, 6 or 8, are transmitted within a sample frame
or sample period[13] as shown in Figure 2.2. As with the 2-Channel Serial Audio Inter-
face, the TDM interface is consists of two control clocks, a frame synchronization pulse
(FSYNC) and serial clock (SCLK), and the serial audio data line (SDATA).

FIGURE 2.2: Generic TDM Interface [13, S.1, Figure 1]

Frame Synchronization Pulse - The FSYNC pulse is simply to identify the begin-
ning of a TDM frame (at the rising edge or falling edge of the pulse). This frame rate is
always at the audio sample rate, such as 44.1 kHz, 48 kHz, etc.

Channel Block - Each channel block consists of the audio data word succeeded by
a sufficient number of zero data bits to complete the N-bit channel block. For example
for a channel block of 32 bit with 24 bit audio data appended by 8 zero data bit.

Serial Clock - The main purpose of the serial clock is to shift the audio data into or
out of the serial audio ports[13, pg.2]. For example, 8 TDM slots each with a width of 32
bits and a sampling rate of 48 kHz, a minimum clock frequency fCLK = 8 · 32 · 48kHz
= 12, 288MHz required.

2.4 Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) is an interface bus developed by Motorola to pro-
vide full-duplex synchronous serial communication between master and slave devices
[14]. This Serial interface was developed to replace the parallel interface inside in
any suitable system. Using this serial interface instead of parallel interfaces would in-
evitably reduce the volume of wires needed for the routing without reducing the data
transfer speeds[15]. The synchronous data transfer is using only one clock provided by
the SPI-master unit so the SPI-slave units can be designed without expensive precision
oscillators.

A standard SPI bus is a form of four wired communication interface, these wire
carry the information needed for the communication between SPI-master and SPI-
slave. The signal wires include Master Out Slave In (MOSI), Master In Slave Out
(MISO), the clock (SCK), and Slave Select (SS) (as shown in Figure 2.3). The SPI bus
has one master and one or more slaves, master activates the slave via the chip select
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emergency input (CS) to communicate with each other.

FIGURE 2.3: 4-wire SPI bus configuration with multiple slaves

2.4.1 Polarity and Clock Phase

The SPI bus operate in 4 different modes.These unique modes are defined by Clock
polarity (CPOL) and clock phase (CPHA) (specified as "0", "1") as shown in figure 2.4.
The detailed description of the available modes and data capture are summarized in
the table 2.2.
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FIGURE 2.4: SPI bus timing [14, Figure 2]

MODE CPOL CPHA Definition

0 0 0 data is sampled at the leading rising edge
of the clock

1 0 1 data sampled at on the trailing falling
edge

2 1 0 data is sampled at the leading falling
edge of the clock

3 1 1 data sampled on the trailing rising edge

TABLE 2.2: SPI mode definitions

2.5 Direct Memory Access(DMA)

DMA is the generic term used to refer to a transfer protocol where a peripheral device
transfers information directly to or from memory, without the system processor being
required to perform the transaction [16]. DMA has several advantages and are listed
below:

• DMA transfers the data with maximum speed thus is useful for high-speed data
acquisition devices

• DMA also minimizes latency in the device as the dedicated hardware responds
more quickly than interrupts, and also transfer time is short. Minimizing latency
means, reducing the amount of temporary storage (memory) required on an I/O
device[17].
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• DMA also off-loads the processor, therefore, the processor is not used for handling
the data transfer activity and is available for other processing activity.

• DMA also increases overall system utilization as data transfer actually occurs in
parallel.

2.6 CTAG

CTAG face 2|4 is an I2S sound card based on AD1938 audio codec by Analog Devices
Inc[18]. It is 4 layer PCB which also include ground and power panel. Soundcard
contains 3 logical section, there are: 1. powder supply(digital 3.3V and 3.3v+5v analog),
2. Codec consists of reset circuitry and digital I/O and 3. Analog I/O.

2.7 AD1938 Codec

The AD1938 codec is a single chip high-performance audio codec. It contains (24 bit)
four Analog-to-digital converts (ADCs) with inputs and eight Digital-to-Analog con-
verters (DACs) arranged as single-ended output. The AD1938 is controlled through an
SPI interface as shown in Functional block diagram figure 2.5. The onboard PLL is used
to derive the master clock either from the LR clock or from an external crystal and thus
the AD1938 eliminates the need for a separate high-frequency master clock [19].

The Following describes the summary of some characteristics and features from the
AD1938 data-sheet [19]:

• Low EMI design

• operates from 3.3 V digital and analog supplies.

• 24bits Word Width

• Support 8khz to 192khz sampling rate

• SPI controllable for flexibility

• PLL generated or direct master clock

• Right-justified, left-justified, I2S-justified, and TDM modes

• 94 dB THD + N

• Log volume control with autoramp function

Functional Block Diagram (as shown in Figure 2.5 ) and Description of each block:

https://github.com/ctag-fh-kiel/ctag-face-2-4
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FIGURE 2.5: Functional Block Diagram [19, Figure 1]

2.7.1 Analog to digital converters(ADC)

In the AD1938 there are four ADC channels that are configured as two stereo pairs with
differential input. The ADCs operates at a different sampling rate of 48kHz, 96kHz
or 192kHz. It includes digital filters with 79db stopband attenuation. The Digital out-
puts are provided by the two serial data output pin, one for each stereo pair and a LR
clock(ALRCLK) and bit clock (ABCLK).

ADC Control registers: There are three ADC control registers. ADC control register
0 configures bits related to the power-down mode, High-pass filter and output sam-
ple rate . ADC control register 1 defines ADC serial formats, word width, serial delay
clock and bit clock (BCLK) active edge bits. similarly, programming ADC control reg-
ister 2, configures LRCLK polarity and format, BCLK source, polarity and format and
operating in either master or slave mode.

2.7.2 Digital to Analog Converter(DAC)

The AD1938 DAC channels configured as four stereo pairs(8 analog output). It includes
digital filters with 70db stopband attenuation. Digital inputs are supplied through four
serial data input pins (one for each stereo pair), a common frame clock (DLRCLK), and
a bit clock (DBCLK)[19].

DAC Control registers: There are five DAC control registers. DAC control register 0
defines power-down mode, Sample rate, serial data delay, serial format. DAC control
register 1 configures LRCLK Polarity , BCLK per frame, BCLK source, BCLK Polarity,
LRCLK and BCLK master/slave mode bits. DAC control register 2 programs master
mute, word width, output polarity. DAC Individual Channel Mutes register, as name
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implies mutes individual DAC channels. DAC Volume Controls register control the
output volume.

2.7.3 Clock signal

The onboard phase locked loop (PLL) can be selected to reference the input sample
rate either from the LRCLK pins or 256, 384, 512, or 768 times the sample rate from the
MCLKI/XI pin ( 48 kHz mode )[19]. In an AD193x family, if a device is programmed
at 256x fs, the frequency of master clock input is 256 x 48 KHz= 12.288 MHz. This fre-
quency of the master clock should remain same even the device operates at 96 kHz or
192KHz (which become 128x fs and 64x fs respectively).

By default, onboard PLL generates the internal master clock from an external clock.
This internal master clock for ADC is 256 x fs for all clock modes but for DAC it
varies according to the modes: 512x fs( 48KHz mode), 256x fs( 96KHz mode) and 128x fs(
192KHz mode). By setting the correct values in PLL and control register 1, a direct mas-
ter clock 512 x fs can be used either for ADC or DAC.

PLL and Clock control registers: There are two PLL and Clock control registers. PLL
and Clock control register 0 defines PLL power-down mode, master clock rate setting,
PLL input and internal master clock enable. PLL and clock control register 1 configures
ADC and DAC clock source selection either from PLL or master clock.

2.8 Teensy 3.6

The Teensy 3.6 USB Development Board is an Arduino compatible USB-based micro-
controller development system from PJRC [20]. All of the standard Arduino func-
tions ( digitalWrite, pinMode, analogRead, etc ) works on Teensy. It has powerful
MK66FX1M0VMD18[21], 32 bit 180 MHz ARM Cortex-M4 processor. This high per-
formance ARM chip has faster clock speed, more memory, and flash. It also contains
hardware peripherals such as SD card functionality, Ethernet, extended serial commu-
nication ports etc. The below figure 2.6 is the pin diagram of the Teensy 3.6. The table
2.3 summarizes the features specific to Teensy 3.6.
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FIGURE 2.6: Teensy 3.6 pin configuration

Specification Teensy 3.6

Flash Memory 1.25 MB
RAM Memory 256 KB
EEPROM 4KB(4096 (bytes)
I/O Pins 62 (42 breadboard friendly)
Tolerance On All Digital I/O Pins 5volts
PWM 22
peripherals USB High Speed (480 Mbit/sec)

Port
2 CAN Bus Ports
4 I2C Ports
11 Touch Sensing Inputs
3 SPI Ports
6 Serial Ports
14 Hardware Timers
Native (4 bit SDIO) micro SD card
port
Hardware single precision floating
point

TABLE 2.3: Teensy 3.6 hardware details
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2.8.1 Teensy clock generation:

The Figure 2.7 describes the clock generation logic of the teensy’s processor. The clock
generation logic divides the clock sources for the various domains like system clock bus
clock, flash memory and for peripheral module-specific clock.

FIGURE 2.7: Clocking diagram [21, Figure 6-1]

The following table 2.4 describes the important clocks needed for the I2S clock gen-
eration from the previous block diagram

Clock name Description

System clock generated by MCGOUTCLK divided by OUTDIV1, clocks
the bus masters directly.

MCGFLLCLK MCG output derived from FLL.
MCGPLLCLK MCG module output of the Phase lock loop(PLL).

MCGFLLCLK and MCGPLLCLK may clock some mod-
ules.

USB1PFDCLK USB Phy output of the PLL Fractional Divider.
IRC48MCLK Internal 48 MHz oscillator that can be used as a reference to

the MCG and also may clock some on-chip modules.
OSCERCLK System oscillator output sourced from OSCCLKthat may

clock some on-chip modules. Dividable by 1,2, and 4.

TABLE 2.4: Kinetic
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The I2S audio master clock (MCLK) can be generated either from system clock
(SYSCLK) or system oscillator clock (OSCERCLK) or peripheral clock( MCGPLLCLK,
MCGFLLCLK, IRC48MCLK, USB1PFDCLK ). MCLK is used to generate the bit clock
and the frame sync of I2S/SAI. When using I2S as slave, the bit clock and frame sync
are generated externally. Figure 2.8 illustrates I2S clock generation of the teensy3.6.

FIGURE 2.8: I2S/SAI clock generation [21, Figure 6-12]

2.9 Audio Library Architecture

FIGURE 2.9: Teensy Software Architecture

The Teensy software can be visualized into four layers (as shown in Figure 2.9.

1. Drivers
This layer contains the basic driver classes that are needed to communicate to
external devices like SPI, USB, Serial Terminal, GPIO pin.
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2. Teensy Core Library
This layer contains implementation of Arduino driver base class and also defines
the base classes for audio stream, usb, gpio and audio library

3. Audio Library
This library contains the utilities for audio analysis like, fft, peek detection, filter,
mixer and audio data capture, audio data playback from the SD card. There are
utilities to generate various waveforms like sine, sweep and ramp signal.

4. Audio Application
The audio application can be developed using the audio library and drivers.

2.9.1 Naming conventions of audio library

Teensy audio library development group has set of rules for creating new objects and
their naming conventions. Audio objects should follow consistent naming conventions
and adhere to common rules to make audio library usable by users of all skill levels. Ev-
ery object in the audio library begins with “Audio” followed by category name, which
is followed by a name that describes the function. Each name begins with capital letter.

The category names that are defined by teensy audio library are followed [22]

• Input: receives audio signals or real time data

• Output: transmits signal or real time data

• Play: Read data from SD card and play

• Record: Write data to SD card

• Mixer: Add multiple audio streams with individual gain

• Analyze: Analyze audio samples and provide information

• Synth: create audio

• Filter: Filter audio sample

• Effect: modifying audio, other than filtering

• Control: control external hardware which processes the audio.

For example from the object name“AudioInputI2S” one can deduce that it is a object
which receives input data in I2S format.
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2.9.2 Creating new objects in Teensy audio Library

By using Teensy audio library, creating the own audio processing objects very easy [23].

C++ Object definition All the new objects should be derived from the “AudioStream”
base class. This base class provides all memory management (allocate, release), com-
munication with other audio objects(receive, transmit, connect) and CPU/memory track-
ing functions. The basic C++ Template using AudioStream is shown below

# include " AudioStream . h"

c l a s s AudioEffectTemplate : publ ic AudioStream
{
publ ic :

AudioEffectTemplate ( ) : AudioStream ( 1 , inputQueueArray ) ;
v i r t u a l void update ( void ) ;

p r i v a t e :
audio_block_t ∗ inputQueueArray [ 1 ] ;

} ;

In this thesis, AudioControlAD1938, AudioInputTDMSlave, AudioOutputTDMSlave
and AudioEffectFreeverb classes are developed by following the rules mentioned above
and further details about these classes can be found in Implementation chapter.

2.10 DMA on K66144M180FS

2.10.1 Enhanced direct memory access:

The enhanced direct memory access (eDMA) controller is a second-generation mod-
ule capable of performing complex information exchanges with negligible intervention
from a host processor. The main purpose of this module is to allow the CPU to per-
form other operations rather than data transfer, this will increase system performance.
The eDMA module works in conjunction with the direct memory access multiplexer
(DMAMUX), which routes DMA sources called slots to any of the DMA channels[21].
This device contains 32 DMA channel, which allows maximum 63 DMA request signals
(59 peripheral slots and up to four always-on slots).The eDMA’s programming model
is separated into two regions(as shown in Figure 2.10:

• The eDMA engine ( defines the calculation of source and destination address ,
and data movement operations)

• The transfer-control descriptor local memory (consists of transfer control descrip-
tor (TCD) for each eDMA channel)
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FIGURE 2.10: eDMA module

2.10.2 eDMA transfer control descriptor (TCD)

The TCD contains all the information about the data movement. This includes the
source and destination addresses, the address increment after each transfer and the
transfer size [24]. It operates in minor and major nested transfer loops

2.10.3 TCD memory:

Each channel requires a 32-byte transfer control descriptor for defining the desired data
movement operation. The channel descriptors are stored in the local memory in se-
quential order: channel 0, channel 1, ... channel 31. Each TCDn definition is presented
as 11 registers of 16 or 32 bits. Prior to activating a channel, you must initialize its
TCD with the appropriate transfer profile. The table 2.5 summarizes the TCD Register
description
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eDMA TCDn Register Name Abbreviation Width(bits)

0x00 Source Address TCDn_SADDR 32
0x04 Transfer Attributes TCDn_ATTR 16
0x06 Signed Sources Address Off-

set
TCDn_SOFF 16

0x08 Minor Byte Count TCDn_NBYTES 32
0x0C Last Source Address Adjust-

ment
TCDn_SLAST 32

0x10 Destination Address TCDn_DADDR 32
0x14 Current Minor Loop Link,

Major Loop Count
TCDn_CITER 16

0x16 Signed Destination Address
Offset

TCDn_DOFFR 16

0x18 Last Destination Address Ad-
justment/Scatter Gather Ad-
dress

TCDn_DLAST_SGA32

0x1C Beginning Minor Loop Link,
Major Loop Count

TCDn_BITER 16

0x1E Control and Status TCDn_CSR 10

TABLE 2.5: eDMA transfer control descriptor (TCD) register

2.10.4 Nested Loop Example

Each DMA request will move the number of bytes configured in the NBYTES (minor
byte count) register. This corresponds to a minor loop [24]. When each minor loop is
transferred CITER(major loop count) register is decremented. When major loop count
reaches its half value DMA Interrupt is generated and data is copied. Similarly when
major loop count reaches zero(CITER register is equal to zero), once again DMA inter-
rupt is generated and data is transferred in to buffer.

Minor loop -NBYTES
Major loop- CITER minor loop
The Figure 2.11 shown the Nested Loop example.
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FIGURE 2.11: Nested Loop

2.11 Daisy chain

In daisy-chain mode, multiple devices are connected such that each device receives the
previous devices’ data and transfers it along with its own data[25]. Consider a circum-
stance where N devices are connected in the chain.The second device gets information
from the first device and forwards this information along with its information to the
third device. Similarly, the Nth device receives the collective information along with all
the devices.

Finally, one receiver is connected to the Nth device, which collects all the data from
the Nth device. Figure 2.12 shows how three (N = 3) devices work in a daisy chain. A
daisy-chained network can take two basic forms: linear and ring[26]. An advantage of
the ring topology over linear is that the number of transmitters and receivers can be cut
in half since there is a loop connection back from the last device to the first. The main
advantage of the daisy chain is its simplicity. Another advantage is scalability[27].

FIGURE 2.12: Three Devices in Daisy Chain
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2.12 Digital signal processing

2.12.1 Digital Filters

The digital filter is a complicated device that performs mathematical operations on a
sampled and discrete signal to enhance or reduce the necessary aspects of the signal.
Digital filters are expensive when compare to analog filters and mostly used in signal
processing. The behavior and response of the digital filter are very important. Digital
filters have only handful of components that must be taken care and just by arranging
these few component in a complex form a complicated filter can be made.

There are two types of filters in the digital realm: Finite Impulse Response (FIR)
filters and Infinite Impulse Response (IIR) filters.

Finite Impulse Response (FIR) Filter:- FIR Filter is a filter whose impulse response
is of finite duration as it settles to zero at finite time [28]. In other terms: if the input
signal has fallen to zero, the filter output will also fall to zero after a given number of
sampling periods. The Figure 2.13 shows an FIR filter structure of order N + 1. For
an FIR filter of order N, output is computed as a weighted sum all values of the filter
input, i.e.

y(n) = b0x(n) + b1x(n − 1) + ... + bNx(n − N) (2.1)

y(n) =
N

∑
i=0

(b(i) ∗ x(n − i) (2.2)

where:

• x(n) is the input signal

• y(n) is the output signal (given by linear combination of the last input samples
x(n-i)

• b(i) is the coefficient of the filter( i.e. give the weight for the combination)

FIGURE 2.13: Discrete-time FIR filter of order N [28]
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FIR Filters have few useful properties that make it sometimes important. The ad-
vantage of use FIR filter over IIR filter are:

• no feedback loop, no rounding error occurred by summed iteration. So imple-
mentation of such filter are simpler.

• very stable, the output is the summation of finite number of finite multiple of
input.

• With symmetric coefficient FIR filter providers linear phase response, sometime
this is very important in some applications like data communications, cross filter-
ing etc

• Also used in designing all-pass filter to suppress the phase response of standard
IIR filter.

The disadvantages of FIR filter are high CPU power consumption, low efficiency.
By designing the specialized hardware for FIR filters, one can make it as efficient as IIR
for many applications.

Infinite Impulse Response (IIR) Filter:- In DSP, IIR is one of the primary type of
digital filter. As name implies the "impulse response" is infinite, because of the feed-
back in the filter. If the impulse signal given to filter, an infinite number of non zero
values will be obtained, i.e it continues infinitely.

The figure 2.14 show the IIR filter example and the difference equation [29] which
explains how the output signal is compared to input (equation 2.3)

FIGURE 2.14: Sample IIR filter structure

y(n) =
1
a0
(b0x(n) + b1x(n − 1) + .... + bpx(n − D)

−a1y(n − 1)− a2y(n − 2)− .... − aQy(n − Q)) (2.3)
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Where

• P is the feedforward filter order

• bi are the feedforward filter coefficients

• Q is the feedback filter order

• ai are the feedback filter coefficients

• x(n) is the input signal

• y(n) is the output signal.

The advantage of IIR filter over FIR is, the given filter characteristic can be achieved
with less memory and calculation. It also as many disadvantages like,

• If there is any error in output computation due to fixed point operations, this error
is propagated back through the feedback and it continuously effect the output.

• less stable and nonlinear phase response

2.12.2 Filters response Type

There are many types of filters under this category like high pass filter, low pass, band
pass, stop band, notch, comb filter and all-pass filter. For this thesis comb and all-pass
filters are required, so description of these filters will be explained below.

Comb Filter:
A comb filter is generated by mixing the delayed version of the input signal to itself,
causing constructive and destructive interface. A comb filter can be generated either
from FIR or IIR filters. The frequency response of a comb filter appears as series of reg-
ularly spaced notches, giving the appearance of a comb. Thus the name comb is coined.

There are two different types of Comb filters depending on the direction in which de-
layed signal added to input like Feedforward and Feedback.

The advantages of the comb filters are:

• It has linearphase and guaranteed stability only for FIR form.

• It is used to replace expensive multipliers in the filter

• It reduces the artifacts such as dot crawl

• It can be used to model the effect of acoustic standing waves in a cylindrical cavity

multiplierless filters
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Feedforward form:- Feedforward comb filter is one of the simplest FIR filter [30] and
the general structure is shown in the Figure 2.15. The frequency response of this filter is
periodic, its drops periodically to minimum value and rises periodically to maximum
value.

FIGURE 2.15: Feed Forward comb filter

It can be described by the difference equation, where K is the delay length, and α is
a scaling factor applied to the delayed signal.

y(n) = x(n) + αx(n − K) (2.4)

If we take Z Transform on both sides, we define the transfer function as:

H(z) =
Y(z)
X(z)

(2.5)

H(z) = 1 + αz−K (2.6)

H(z) =
zK + α

zK (2.7)

Feedback form:- The feedback comb filter is a simple type of infinite impulse re-
sponse (IIR) filter [30] and the general structure is shown in the Figure 2.16

FIGURE 2.16: Feedback comb filter

General equation for feedback comb filter is

y(n) = x(n) + αy(n − K) (2.8)

The transfer function of feedback form is:
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H(z) =
Y(z)
X(z)

(2.9)

H(z) =
zK

zK − α
(2.10)

All-pass filter

The All-pass filter is one of the important blocks while building the digital audio sig-
nal processing system. It is a filter where the amplitude is unity for all frequency but
introduces the phase shift [31]. It behaves as phase equalizer. The main purpose of
using an all-pass filter is to add a phase shift to the response of the system. The all-pass
filters are commonly used in an audio application like filter banks, speaker crossover,
and reverberators. For artificial reverberators, the basic structure of the all-pass filter is
shown in Figure 2.17. It is constructed by using delay with feedforward and feedback
paths (This structure, known as the Schroeder all-pass comb filter).

FIGURE 2.17: All-pass filter

The difference equation is :

w(n) = x(n) + g ∗ w(n − M1) (2.11)

y(n) = −g ∗ w(n) + w(n − M1) (2.12)

2.12.3 Numerical Precision

Floating-point representation

Floating point represent a number in a wide range from very small (2−17) to very large
(270). IEEE 754 defines the floating point numbers with three fields: S sine bit, e an
exponent, f mantissa(fractional) [32].
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IEEE 754 defines single and double precisions.

• single precision: it contains total 32bits, which includes one sign bit (positive or
negative) , 8 bits exponent and 23 bits fractional.

• double precision: it contains total 64bits, which includes one sign bit (positive or
negative) , 11 bits exponent and 52 bits fractional.

Advantages:

• It represent values between integers.

• because of the scaling factor, it can represent wide range of values.

Disadvantage:

• Processing time is more compare to fixed point number

Fixed point representation

Earlier low-cost microcontrollers and DSP processors don’t have a Floating-Point
Unit (FPU) to handle the floating-point operations. They have only Arithmetic Logic
Unit (ALU) which can handle only integer arithmetics.

The floating-point numbers are multiplied by a scaling factor and make floating
numbers as integers. The scaling factor depends upon how many fractional positions
are absorbed in the integer. The scaling factor can be a power of 10(decimal) or power
of 2 (binary). When the scaling factor is a power of 2 then it is called binary scaling. The
number of bits of scaling factor determines the virtual binary point.

After the arithmetic operations, the integer is divided by the same scale factor (re-
scaling) to remove the scaling. In binary scaling division can be achieved by right shift-
ing the number.

Q format: The fixed points are represented by Q m.n format.

Where m is a number of bits for the signed integer part, n is a number of bits for the
fractional part( scaling factor 2n), m+n is the total word length, it can be 16 bits or 32
bits. For example, Q1.15 means 1 bit signed integer part and 15 bits for the fractional
part.

Pros

• The fixed point has more precision than float point

• scaling and rescaling can be done using shift operations

Cons

• Due to the scaling, care must be taken to avoid the over flow.
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2.13 Reverberation

Natural reverberation is the combined effect of multiple sound reflections within a
room[33]. Once the source of the sound stops, the reverberation in a room causes the
perceived sound to decay at a smooth and gradual rate. In the real world, reverberation
characteristics are influenced by the dimensions of the actual room size, the construc-
tion of the room (wall materials), objects found in the room( i.e furniture) and diffusion.

Normally there is always a direct path from source to the listener but the sound
waves travel by bouncing at the walls and surfaces in the room to the listener. These
waves take longer time and path, with less energy. In the figure 2.18, as sound waves
may be reflected several times before reaching the listener, the reflections attenuate over
time [34].

FIGURE 2.18: Sound wave traveling back and forth in a closed-space
environment [34, Figure 1.2.1]

The figure 2.19 shows the impulse response plots for two very different spaces; a
large concert hall and a cathedral [35]. As the sound waves travel, it reflects the nearby
structures thus causing the first echoes. These initial echoes are called as Early Reflec-
tions. Since reflections are direct reflection it has high energy and difficult to implement
but important for the simulation of reverb. The sound waves continue to expand and
generate more reflections, with the reflected signals adding up with other reflected sig-
nals while decaying in energy. The resulting reverb “tail” is called late reverberation
or subsequent reverberation [35]. The late reflections have a denser characteristic with
lower energy and produce a sound with more persistence. The persistence is more be-
cause one can hear the small version of an original sound source for long after that
source has fadeout. The time taken for sound energy to get below audible thresholds
for human hearing is termed reverb or reverberation times [36].
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FIGURE 2.19: The impulse responses of a large hall and cathedral. [35,
Figure 11.1]

2.13.1 The Reverb Time: RT60

RT60 reverb time is one of the most well-known measurements for reverb. The amount
of time required for reflections of a direct sound to decay 60 dB is reverb time or RT60.
Sabine worked on reverberation and established a relationship between the RT60 of a
room, its volume, and its total absorption (in sabins) [37]. and derived the following
formula in Equation 2.13 :

RT60 = 0.5
VR

SR ARAve
(2.13)

Where

VR = volume of room in f t3

SR = surface area of room in f t2

ARAve = average absorption coefficient

2.13.2 Artificial Reverberation

In addition to natural reverb, one can also reproduce the reverberation effect using
software (developed using audio cards, synthesizers, processors, and digital audio ap-
plications). In 1920, the need for the artificial reverberation first raised especially for
the music studio and recordings [38].
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Schroeder Reverberation

In 1960, Manfred Schroeder developed the first digital reverberation algorithm by us-
ing four parallel comb filter with two delay-based all-pass filters in series as shown in
figure 2.20. In this structure, the comb filters produce the long echoes that occur be-
tween the walls in a hall or room. but these parallel comb filters do not build up the
echoes as in the realistic situation. To increase the echo density the parallel comb filter
output is fed to all-pass filters connected in series. These all-pass filter multiplies the
echoes to generate the reverberation effect and avoid coloration as all-pass filters have
the flat frequency response.

FIGURE 2.20: Schroeder’s original reverb design

Schoerder suggested few properties for selecting comb filters and all-pass filter as
follows: [35]

Comb filter properties:

• The ratio of smallest to largest delay should be 1:1.5

• choose the delay lengths that are typically mutually prime and spanning succes-
sive orders of magnitude, e.g., 1051, 337, 113 .

• Gain should be calculated according the below equation ( 2.14 )

g = 10
−3DTs
RT60 (2.14)

where

Ts = sample period
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D = the delay length
g = feedback gain

All-pass filter properties:

• Select the delay that are smaller than comb filters (1ms to 5ms)

• both the gain must be same (in between 0.5-0.707)

Moorer’s Reverberation

In the real room, the high frequencies decay much faster than low frequency, this cannot
be achieved using Schroeder reverberator. Other problems with Schroeder suggested
structure is that the echo density doesn’t adds-up sufficiently as required and for im-
pulsive sounds, the response is fluttery and metallic. To overcome the above problems
James Moorer suggested improvements (as shown in figure 2.21) to Schroeder reverber-
ator structure by adding two additional comb filters with Low pass filter in the feedback
path and only one all-pass on the output. These additional comb filters increase the
echo density and with the addition of low pass filter generates the frequency depen-
dent air absorption [39]. However, the Moorer’s reverberator produces much better
reverberation effect as compare to Schroeder but still sensitive to impulsive sounds.

FIGURE 2.21: Moorer’s reverb design

Low pass comb filter Reverberation

The figure 2.21 is the block diagram of low pass comb filter. By placing low pass filter
in the feedback loop not only remove the high frequencies but also generate the short
impulsive sounds by smearing the echoes [40].
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FIGURE 2.22: Low pass comb filter design

The difference equation of comb feed farword filter (equation 2.15) and Low pass
filter(LPF) (equation 2.17) is as follows

HC(z) =
z−D

1 − g1z−D (2.15)

HLP(z) =
1

1 − g2z−1 (2.16)

According to th figure 2.22 the Lowpass comb filter equation can obtain by multi-
plying the LPF transfer equation to feedback g1 Z−z

H(z) =
z−D

1 − HLP(z)g1z−D (2.17)

After solving the equation 2.18 the final output is

y(n) = x(n − D)− g2x(n − D − 1) + g2y(n − 1) + g1y(n − D) (2.18)

2.13.3 Freeverb Algorithm

Freeverb is modifed implementation of Schroeder reverberation programmed by “Jezar
at Dreampoint” and popularly used in free software world [41]. The basic model of the
freeverb algorithm is shown in the figure 2.23. The two-channel input is combined to
create the mono signal by multiplying with gain and is fed to left and right channel
reverberator. The output from reverberators is given to a mixer which combines both
direct signal and reverberator signals to produce the desired stereo output. More ex-
planation on generation stereo output is explained in the coming sections.
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FIGURE 2.23: Freeverb algorithm Model [42]

The basic block diagram of each reverberator channel consists of 8 parallel Schroeder-
Moorer lowpass comb-filters and four series Schroeder all-pass filter. The figure 2.24
shows the block diagram of the freeverb left audio channel with filter delay lengths. As
per the suggestion by Jezar, the freeverb right stereo channel can be obtained by adding
an integer value 23 to delay lines of all 12 filters. This integer is known as stereospread
[41].

FIGURE 2.24: Freeverb algorithm for mono channel [41]

In the Mixer block the directed signals and the reflected signals are mixed to provide
reverberation effect.[

outputL
outputR

]
= dry

[
inputL
inputR

]
+

[
wet1 wet2
wet2 wet1

] [
outputL
outputR

]

where

• dry = this parameter defines how much original signal should be mixed to output.

• wet1 and wet2 = this parameter defines how much reverberation signal is mixed
with output.
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Lowpass-Feedback Comb Filter in freeverb

The lowpass comb filter in freeverb is similar to lowpass comb filter suggested by
Moorer. But lowpass used is a unity gain one-pole as shown in figure 2.21. The lowpass
filter gain was selected as g1 = 1-d so that filter has unity gain at zero frequency and at
high frequencies is a relatively small gain. The transfer function of the low pass filter is
given below

FIGURE 2.25: Lowpass comb filter in freeverb

H(z) =
1 − d

1 − dz−1 (2.19)

Therefore by substituting the lowpass filter equation 2.19 in the comb filter transfer
function equation 2.15 , the approximate lowpass comb filter transfer function is then

LBCF f ,d
M =

z−M

1 − f 1−d
1−dz−1 z−M

(2.20)

The difference equation of the freeverb lowpass comb filter is

y(n) = w(n − M) (2.21)

z(n) = y(n) ∗ (1 − d) + z(n − 1) ∗ d (2.22)

w(n) = x(n) + z(n) ∗ f (2.23)

where

x(n) = input signal
y(n) = output signal

w(n-M) = delay line of comb filter
z1 = delay line of lowpass filter

f = feedback gain (f < 1)
d = damping factor of lowpass (d < 0.5)
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plugin parameter:

This section explains each user controllable effect parameters and their purposes [43]

Wet Mix:- Wet signals are the type of signals coming from reverberation and that
undergo modification and process. Dry signals are the raw /direct signals coming from
the source. The mixer controls the signal level by mixing the original dry signal with
the altered wet signal. It determines how much stereo separation occur in the reverber-
ation.

Roomsize (f ):- In freeverb algorithm roomsize is related to the feedback gain of low
pass comb filter. By increasing the roomsize (f increases) the reverberation time in-
creases. For more stability the f must be less than one.

f = roomsize = initialroom * scaleroom + offsetroom [41]
= 0.5*0.28 +0.7 = 0.84

Damping (d):- It gives the decay factor of the reverberation. Higher the damping
value, less reverb and decays fast. For stability the d must be less than one.

d = damp = initialdamp * scaledamp [41]
= 0.5*0.4 = 0.2

2.14 Literature Review

The Teensy Audio library has support for the control of various codecs like Asahi KA-
SEI AK4558, Cirrus Logic CS4272, Cirrus Logic CS42448, NXP SGTL5000 and Wolfson
WS8731 etc. All the codec are controlled using Inter-Integrated Circuit (I2C) bus and
codecs are configured as I2S slave and teensy as I2S master with maximum support of
8 channels in TDM mode.

This thesis developed the control class for the AD1938 codec in Teensy Audio li-
brary with SPI control. It also extended the TDM I2S input and output class for the
both 8 and 16 channels and Teensy as I2S slave.

This thesis adds the reverb effect to the teensy audio library by using the free-
verb algorithm, developed by Jezar. During the development process, many digital
reverberation algorithms are studied. The first artificial reverberation was designed by
Schroeder using four parallel comb filters and followed by two series all-pass filters
[44]. The Schroeder reverberator does not have sufficient echo density and had very
poor response (Metallic) for the impulsive sounds [39].
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Moorer improved the Schroeder algorithm by adding more comb filters to increase
the echo density [40].A low pass filter is added to the feedback loop of the comb filters
to simulate the frequency dependent air absorption [39]. But still has poor response to
impulsive sounds.

For exponential buildup of the echoes, Gardner suggested using nested all-pass fil-
ters, where an all-pass filter is embedded to the delay line in another all-pass filter. The
echoes generated by inner all-pass filter are recirculated by the outer feedback path.As
a result, the echo density increases with the time [45] and reduced the metallic sound
of the all-pass filter. The nested all-pass filter design is more complex to implement.

convolution reverb convolves the input signal with pre-recorded or approximated
or simulated room impulse response(RIR) [46]. The convolution operation can be real-
ized by passing the input signal through the FIR filter whose coefficient are the room
impulse response. This reverb has the best sound but unfortunately more complex
operations and computationally expensive. There is no chance to change the reverb
parameter.

There much more reverb algorithm, this thesis implements the freeverb algorithm.
The freeverb algorithm is based on Schroeder and Moorer reverberator, which is pro-
grammed in C++ by Jezar at Dreampoint is widely used in the open source commu-
nity. The teensy 3.6 has only 256KB RAM, a Freeverb algorithm for two-channel audio
stream can be implemented within this available memory.



49

Chapter 3

Implementation and Hardware
Setup

This chapter explains about hardware and software tool setup and details of implemen-
tation of individual components.

3.1 Hardware Setup

3.1.1 Installing the teensyduino application

The Arduino IDE doesn’t come with built-in support for Teensy devices, so Paul Stoffre-
gen (the genius behind Teensy) created a simple application called Teensyduino which
allows you to program your Teensy directly from the Arduino IDE, as well as adjust
the clock speed, and USB device functions (serial, HID, MIDI etc. . . )[47]. Below are few
steps that have to follow for the installation of teensyduino on windows PC.

1. Install Arduino from https://www.arduino.cc/en/Main/Software The current
release build is Arduino-1.8.5

2. Install Teensyduino https://www.pjrc.com/teensy/td_140/TeensyduinoInstall.exe

3. Select the Teensyduino installation directory as Arduino directory (C:/Program
Files (x86)/Arduino)

4. Follow the installation step 3 given in https://www.pjrc.com/teensy/td_download.html
The Teensy audio library is installed in the "C:/Program Files (x86)/Arduino/hardware/
avr/libraries/Audio" folder. Now open the arduino

Once the installation is finished, restart the application. Now navigate to Tools>Board:
the list of Teensy Boards are displayed and select the teensy 3.6. Set Clock speed to
196MHz Optimize speed and ensure USB device type selected as ’serial’.

3.1.2 Setup

The two CTAG board connected to the teensy 3.6 forming daisy chain mode. The Figure
3.1 explains the hardware setup and how the connections are made physically. The

https://www.arduino.cc/en/Main/Software
https://www.pjrc.com/teensy/td_140/TeensyduinoInstall.exe
https://www.pjrc.com/teensy/td_download.html
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table 3.1 and 3.2 explains the Teensy 3.6 connects to the pins on the Master AD1938
sound card and Slave AD1938 sound card respectively.

FIGURE 3.1: Hardware Block Diagram

Master AD1938 Au-
dioCard Pin Name

Teensy
3.6

I2S_MCLK Not
Used

I2S_DAC_LRCLK 24
I2S_DAC_BCLK 9
I2S_ADC_LRCLK 24
I2S_ADC_BCLK 9
I2S_DAC_DATA1 22
I2S_ADC_DATA1 13
SPI_CLATCH 7
SPI_CCLK 14
SPI_COUT 12
SPI_CIN 11
RESETOUT 17

Slave AD1938 Au-
dioCard Pin Name

Teensy
3.6

I2S_MCLK Not
Used

I2S_DAC_LRCLK 24
I2S_DAC_BCLK 9
I2S_ADC_LRCLK 24
I2S_ADC_BCLK 9
I2S_DAC_DATA1 -
I2S_ADC_DATA1 -
SPI_CLATCH 6
SPI_CCLK 14
SPI_COUT 12
SPI_CIN 11
RESETOUT 16
I2S_ADC_DATA2 GND

TABLE 3.1: Pin connections of Master and Slave AD1938 AudioCard and
Teensy 3.6
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Master AD1938 Audio-
Card Pin Name

Slave AD1938 Audio-
Card Pin Name

I2S_DAC_DATA2 I2S_DAC_DATA1
I2S_ADC_DATA2 I2S_ADC_DATA1

TABLE 3.2: Daisy chain Pin connections between Master and Slave
AD1938 codec

3.1.3 Data Sheets

Teensy 3.6

Detailed hardware information is available in the K66P144M180SF5RMV2 Datasheet[21].

AD1938

The summary of characteristic and features of Codec AD1938 is available in the Datasheet[19]

3.2 Daisy chain implementation

FIGURE 3.2: Daisy Chain

AD1938 codec support the daisy chain mode configuration for both ADC and DAC
data transfer.

Two AD1938 are connected in daisy chain mode to expand the system to 8 ADCs
and 16 DACs. The second AD1938 in the above diagram which acts as I2S master
provides the bit clock(BLCK) and frame sync (LRCLK)for both Teensy and first AD1938
codec. The second AD9138 codec registers are configured to use its ADC clock as an
I2S master for the DAC unit (as shown in figure 3.2).
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3.2.1 ADC data flow

The first AD1938 codec ADC output data (4 ADC) is pushed into the second AD1938
codec. The second AD1938 combines this received ADC data with its own ADC data
(4 ADC) and outputs combined ADC data (8 ADC) to Teensy TDM_IN (explained in
Figure 3.3).

FIGURE 3.3: ADC TDM Daisy-Chain Mode (512 fS BCLK, Two-AD193x
Daisy Chain) [19, Figure 22]

3.2.2 DAC data flow

When Teensy sends 16 channels through serial port (TDM out) to second AD1938, the
second AD1938 separates the first AD1938 DAC data and its own DAC data. The first
AD1938 data is pushed through DSDATA2 to the first AD1938 (see Figure 3.4).

FIGURE 3.4: Single-Line DAC TDM Daisy-Chain Mode [19, Figure 18]
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3.3 Audio channels and Sample rate support

The following table list the Audio channel and sample rate available for various ADC
daisy chain configurations.

Sampling rate Audio Channel

48KHz 8 channels at 256 fs single line TDM

48KHz 16 channels at 512 fs single line TDM(The last 8 chan-
nels are empty)

TABLE 3.3: ADC daisy chain configuration

These following are various DAC daisy chain configurations which are possible.

Sampling rate Audio Channel

48KHz 16 channels at 512 fs single line TDM

96KHz 16 channels at 256fs dual line TDM

192KHz 16 channels at 256fs dual line TDM

TABLE 3.4: DAC daisy chain configuration

3.4 Audio Control Class for AD1938 codec

The Teensy Audio library contains the controls class for various codecs like Asahi KA-
SEI AK4558, Cirrus Logic CS4272, Cirrus Logic CS42448, NXP SGTL5000 and Wolfson
WS8731. All the codec are controlled using the I2C bus. There is no support for the
AD1938 codec in Teensy Audio library.

The AD1938 audio control class is derived from the base class of "AudioControl". This
base AudioControl class contains functions for all the codecs and some functions may
not be needed for AD193x. In AD1938 there is no gain control for ADC and no sup-
port input source selection, for this reason, inputLevel() and inputSelect() function not
needed. The following section gives the details how to implement AD1938 control class.

The Audio control class can be divided in two parts

1. SPI port control

2. AD1938 codec control
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3.4.1 SPI port control

The AD1938 has an SPI control port that allows writing and reading internal control
registers of ADCs, DACs, and clock system. The high-level SPI port write and SPI port
read function for AD1938 are developed using the existing SPI library and wire library
functions.

1. Initialize SPI pins and reset ad1938

Configure the Teensy pins, clatch and reset out pins as output. To reset the Ad1938 by
pulling the reset out pin to low and hold for some time and then pull it back to high
using the pinMode function of wiring library.

pinMode ( ad1938_clatch , OUTPUT) ;
pinMode ( ad1938_reset , OUTPUT) ;

d i g i t a l W r i t e ( ad1938_reset , LOW) ;
delay ( 2 0 0 ) ;
d i g i t a l W r i t e ( ad1938_reset , HIGH) ;
delay ( 4 0 0 ) ; //wait f o r 300ms to load the code

After the reset, most of the registers in the Ad1938 codec will initialize with default
values. The initialization will run and PLL acquires the lock state.

2. Configuration Teensy SPI pins

The teensy SPI library uses some pins as default SPI pins(10,11,12,13) as shown in the
pin diagram figure 2.6. If the default pins are used for another purpose, one can recon-
figure alternate pins as SPI pins using the SPI library functions. The function begin()
will initialize the Teensy SPI port registers with configured clock, MISO (master in slave
out), MOSI (master out slave in) pin information.

/∗SPI c lock pin s e t ∗/
SPI . setMOSI ( c in ) ;
SPI . setMISO ( cout ) ;
SPI . setSCK ( c c l k ) ; /∗SPI c lock a l t e r n a t e pin∗/
SPI . begin ( ) ;

3. Configuration Teensy SPI clock and mode

The SPI clock frequency, transmission byte order, and the SPI clock mode are config-
ured using the function SPISetting from the library. .

SPI Settings(AD1938_SPI_CLK_FREQ, MSBFIRST, SPI_MODE3);
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The AD1938 can operate up to maximum 10 MHz SPI clock frequency. In this
project, 1 MHz clock is used. SPI library has two additional bus protection functions to
avoid corrupting the ongoing SPI operations.

/∗d i s a b l e s the SPI i n t e r r u p t s and apply the s e t t i n g s ∗/
SPI . beginTransact ion ( S P I S e t t i n g s ( AD1938_SPI_CLK_FREQ , MSBFIRST , SPI_MODE3) ;

/∗enables the SPI i n t e r r u p t s ∗/
SPI . endTransaction ( ) ;

4. Teensy SPI Slave selection

The SPI slave device is selected by pulling the GPIO pin to low. During the start of
the SPI communication, this pin is pulled to LOW and kept low until all the bytes are
transmitted. At the end of the SPI transfer once again this pin is pulled to HIGH.

d i g i t a l W r i t e ( ad1938_clatch , LOW) ; /∗ s lave s e l e c t ∗/

d i g i t a l W r i t e ( ad1938_clatch , HIGH) ;

5. SPI data formation for AD1938 codec

AD1938 codec uses the following SPI protocol (as shown in figure 3.5 ) to exchange
register value with SPI master. The global address of AD1938 is 0x4 as per the data
sheet. This global address is shifted by one bit and appended with read (1)/write (0)
bit. The MSB byte is 0x9 while reading the data and 0x8 while writing the data.

FIGURE 3.5: SPI data formation

6. Teensy SPI write function

The AD1938 codec register can be configured by sending the 3 bytes using SPI library
transfer function.

unsigned char data [ 3 ] ;
data [ 0 ] = 0x8 ;
data [ 1 ] = 0 ;
data [ 2 ] = 0 x3c ;
SPI . t r a n s f e r (&data [ 0 ] , 3 ) ;
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7. Teensy SPI reading function

To read a register from AD1938 , first send the address of the register along with the
read command and then AD1938 will answer the register value. This reading one byte
can be achieved by passing 0 to SPI transfer function.

unsigned char data [ 2 ] , reg ;
data [ 0 ] = 0x9 ;
data [ 1 ] = 0 ;
SPI . t r a n s f e r (&data [ 0 ] , 2 ) ;
reg = SPI . t r a n s f e r (0 x00 ) ;

8. SPI read and write functions

Combing SPI setting, slave select we can develop spi port read function and write func-
tions.

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
spi_read_reg

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
unsigned char spi_read_reg ( unsigned char reg )
{

unsigned char r e s u l t = 0 ;
unsigned char data [AD1938_SPI_WRITE_BYTE_COUNT ] ;

data [ 0 ] = AD1938_READ_ADDRESS ;
data [ 1 ] = reg ;
data [ 2 ] = 0x0 ;

// and conf igure s e t t i n g s
SPI . beginTransact ion ( S P I S e t t i n g s ( AD1938_SPI_CLK_FREQ ,

MSBFIRST ,
SPI_MODE3) ) ;

// take the chip s e l e c t low to s e l e c t the device :
d i g i t a l W r i t e ( ad1938_clatch , LOW) ;

//Send r e g i s t e r l o c a t i o n , read byte i s 2
SPI . t r a n s f e r (&data [ 0 ] , AD1938_SPI_READ_BYTE_COUNT) ;

// send a value of 0 to read the f i r s t byte returned :
r e s u l t =( unsigned char ) SPI . t r a n s f e r (0 x00 ) ;

// take the chip s e l e c t high to de−s e l e c t :
d i g i t a l W r i t e ( ad1938_clatch , HIGH) ;
// r e l e a s e c o n t r o l of the SPI port
SPI . endTransaction ( ) ;
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re turn ( r e s u l t ) ;

}

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

/∗ sp i_wr i te_reg
∗/

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

bool sp i_wr i te_reg ( unsigned char reg , unsigned char val )
{

unsigned char data [AD1938_SPI_WRITE_BYTE_COUNT ] ;

/∗ f i l l the b u f f e r as per AD1938 format∗/
data [ 0 ] = AD1938_WRITE_ADDRESS ;
data [ 1 ] = reg ;
data [ 2 ] = val ;

// and conf igure s e t t i n g s
SPI . beginTransact ion ( S P I S e t t i n g s ( AD1938_SPI_CLK_FREQ , MSBFIRST ,

SPI_MODE3) ) ; // take the chip s e l e c t low to s e l e c t the device :
d i g i t a l W r i t e ( ad1938_clatch , LOW) ;

SPI . t r a n s f e r (&data [ 0 ] , AD1938_SPI_WRITE_BYTE_COUNT) ;
// take the chip s e l e c t high to de−s e l e c t :
d i g i t a l W r i t e ( ad1938_clatch , HIGH) ;
// r e l e a s e c o n t r o l of the SPI port
SPI . endTransaction ( ) ;

re turn true ;

}

3.4.2 AD1938 codec control

The AD1938 codec contains 17 registers to configure PLL, ADC, DAC and also for mut-
ing and volume increase. Each register is 8 bit length and valid values have to be set
according the Ad1938 data sheet.

The high level functions are

1. Config

2. Enable

3. Disable

4. Volume



Chapter 3. Implementation and Hardware Setup 58

5. DAC mute

6. ADC mute

1. Config

This function is generalized and take the input parameters like sample rate, number of
channels and number of bits per channel similar to ALSA driver. There is one addi-
tional parameter to configure each AD1938 codec either I2S master or slave.

CTAG face 2 4 board contains crystal oscillator operating at 512fs (24.576 MHz).
This will be used to generate clock in master mode. In slave mode the I2S clock is gen-
erated from the ADC LR clock. This function uses the received input parameter to set
the AD1938 codec register values.

AD1938 Master register config:

/∗0 PLL and Clock Control 0 r e g i s t e r , I n i t a l l y i n t e r n a l master c lock i s
diabled , master c lock r a t e s e t t i n a t input 512 (∗ 4 4 . 1KHz or 48KHz) ,
master c lock i s generated by c r y s t a l o s c i l a t o r . ∗/

spi_wr i te_reg ( AD1938_PLL_CLK_CTRL0 , (DIS_ADC_DAC | INPUT512 | PLL_IN_MCLK |
MCLK_OUT_XTAL |PLL_PWR_DWN) ) ;

/∗1 PLL and Clock Control 1 r e g i s t e r , DAC clock source s e l e c t master c lock
MCLK∗/

spi_wr i te_reg ( AD1938_PLL_CLK_CTRL1 , (DAC_CLK_MCLK | ADC_CLK_MCLK | ENA_VREF) )
;

/∗2 DAC Control 0 r e g i s t e r , sample r a t e i s s e t 48khz , S e r i a l data delay i s 1 ,
S e r i a l format i s TDM in daisy chain mode ∗/

spi_wr i te_reg (AD1938_DAC_CTRL0 , (DAC_FMT_TDM | DAC_BCLK_DLY_1 | DAC_SR_48K |
DAC_PWR_UP) ) ;

/∗3 DAC Control 1 r e g i s t e r , B i t c lock i s i n t e r n a l l y generated , DAC’ s LRCLCK
and BCLK are in s lave mode . LCLK p o l a r i t y i s l e f t low , B i t c lock per
frame i s 512 (16 channels ) , BCLK a c t i v e edge Latch in mid c y c l e ( normal )
∗/

spi_wr i te_reg ( AD1938_DAC_CTRL1 , DAC_BCLK_SRC_INTERNAL |DAC_BCLK_SLAVE|
DAC_LRCLK_SLAVE |DAC_LRCLK_POL_NORM | DAC_CHANNELS_16 | DAC_LATCH_MID) ) ;

/∗14 ADC Control 0 r e g i s t e r , Output sample r a t e i s 48KHz ∗/
spi_wr i te_reg (AD1938_ADC_CTRL0 , ADC_SR_48K) ;

/∗15 ADC Control 1 r e g i s t e r , In TDM mode BCLK a c t i v e edge Latch in mid c y c l e
( normal ) , S e r i a l data delay i s 1 ,16 b i t word width ∗/

spi_wr i te_reg (AD1938_ADC_CTRL1 , (ADC_LATCH_MID | ADC_FMT_TDM | ADC_BCLK_DLY_1
| ADC_WIDTH_16) ) ;
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/∗16 ADC Control 2 r e g i s t e r , BCLK and LRCLK i s in master mode with i n t e r n a l l y
generated b i t clcok , f o r 16 channels ,BCLK p o l a r i t y Drive out on f a l l i n g
edge , LRCLK p o l a r i t y i s l e f t low∗/

spi_wr i te_reg (AD1938_ADC_CTRL2 , ( ADC_BCLK_SRC_INTERNAL|ADC_BCLK_MASTER |
ADC_CHANNELS_16 |

ADC_LRCLK_MASTER | ADC_LRCLK_FMT_50_50|ADC_LRCLK_POL_NORM|
ADC_BCLK_POL_NORM) ) ;

AD1938 Slave register config:

/∗0 PLL and Clock Control 0 r e g i s t e r , I n i t a l l y i n t e r n a l master c lock i s
diabled , master c lock r a t e s e t t i n a t input 512 (∗ 4 4 . 1 khz or 48khz ) ∗/

spi_wr i te_reg ( AD1938_PLL_CLK_CTRL0 , (DIS_ADC_DAC | INPUT512 | PLL_IN_ALRCLK |
MCLK_OUT_OFF |PLL_PWR_DWN) ) ;

/∗1 PLL and Clock Control 1 r e g i s t e r , DAC and ADC clock source s e l e c t PLL
clock , On−chip vol tage r e f e r e n c e i s enabled∗/

spi_wr i te_reg ( AD1938_PLL_CLK_CTRL1 , (DAC_CLK_PLL | ADC_CLK_PLL | ENA_VREF) ) ;

/∗2 DAC Control 0 r e g i s t e r , sample r a t e i s s e t 48khz , S e r i a l data delay i s 1 ,
S e r i a l format i s TDM in daisy chain mode ∗/

spi_wr i te_reg (AD1938_DAC_CTRL0 , (DAC_FMT_TDM | DAC_BCLK_DLY_1 | DAC_SR_48K |
DAC_PWR_UP) ) ;

/∗3 DAC Control 1 r e g i s t e r , take the BCLK source from DBCLK pin , Slave mode ,
LCLK p o l a r i t y i s l e f t low , ∗/

spi_wr i te_reg (AD1938_DAC_CTRL1 , ( DAC_BCLK_SRC_PIN|DAC_BCLK_SLAVE|
DAC_LRCLK_SLAVE |DAC_LRCLK_POL_NORM | dac_channels | DAC_LATCH_MID) ) ;

/∗4 DAC Control 2∗/
spi_wr i te_reg (AD1938_DAC_CTRL2 , DAC_WIDTH_16) ;

/∗14 ADC Control 0 r e g i s t e r , Output sample r a t e i s 48KHz∗/
spi_wr i te_reg (AD1938_ADC_CTRL0 , ADC_SR_48K) ;

/∗15 ADC Control 1 r e g i s t e r , In TDM mode BCLK a c t i v e edge Latch in mid c y c l e
( normal ) , S e r i a l data delay i s 0 ,16 b i t word width ∗/

spi_wr i te_reg (AD1938_ADC_CTRL1 , (ADC_LATCH_MID | ADC_FMT_TDM | ADC_BCLK_DLY_0
| ADC_WIDTH_16) ) ;

/∗16 ADC Control 2 r e g i s t e r , BCLK source i s ABCLK pin , s lave mode , r e s t are
s i m i l a r to master r e g i s t e r s ∗/

spi_wr i te_reg (AD1938_ADC_CTRL2 , ( ADC_BCLK_SRC_PIN|ADC_BCLK_SLAVE |
ADC_CHANNELS_16 | ADC_LRCLK_SLAVE | ADC_LRCLK_FMT_50_50|
ADC_LRCLK_POL_NORM|ADC_BCLK_POL_NORM) ) ;
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2. Enable

This function enables the PLL mode to normal mode and set the ADC and DAC units
active by setting the PLL Control register

AD1938 Master:

// s e t ENA_ADC_DAC and PLL_PWR_UP
spi_wr i te_reg ( AD1938_PLL_CLK_CTRL0 , (ENA_ADC_DAC | INPUT512 | PLL_IN_DLRCLK |

MCLK_OUT_OFF | PLL_PWR_UP) ) ;

AD1938 Slave:

// s e t ENA_ADC_DAC and PLL_PWR_UP
spi_wr i te_reg ( AD1938_PLL_CLK_CTRL0 , (ENA_ADC_DAC | INPUT512 | PLL_IN_MCLK |

MCLK_OUT_XTAL | PLL_PWR_UP) ) ;

3. Disable

To reduce the power consumption system this functions pull PLL, ADC and DAC units
into power down mode and disables the internal clocks of ADC and DAC by writing
to the registers.

sp i_wr i te_reg ( AD1938_PLL_CLK_CTRL0 , (DIS_ADC_DAC | reg_value| PLL_PWR_DWN) ) ;

sp i_wr i te_reg (AD1938_DAC_CTRL0 , ( ( reg_value&0xfe ) |DAC_PWR_DWN) ) ;

sp i_wr i te_reg (AD1938_DAC_CTRL0 , ( ( reg_value&0xfe ) |ADC_PWR_DWN) ) ;

4. Volume

The codec has a precision of 3/8 db for each step. The input parameter is converted
accordingly and value is get for all the 8 DAC registers .

0 mean full attenuation
1 means no attenuation
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5. DAC mute

Instead of reducing volume step by step , one can mute the all DAC by configuring
registers.

sp i_wr i te_reg (AD1938_DAC_CHNL_MUTE, 0 x f f ) ; /∗mute∗/

spi_wr i te_reg (AD1938_DAC_CHNL_MUTE, 00) ; /∗unmute∗/

6. ADC mute

The ADC input can be muted by configuring the register.

sp i_wr i te_reg (AD1938_ADC_CTRL0 , ( reg_value&0xc3 ) |0x3c ) ; /∗mute∗/

spi_wr i te_reg (AD1938_ADC_CTRL0 , ( reg_value&0xc3 ) ) ; /∗unmute∗/

7. Complete AD1938 control class header file

This class contains all the necessary private variable and hence it can be used in multi-
ple instances.

c l a s s AudioControlAD1938 : publ ic AudioControl
{
publ ic :

bool s p i I n i t ( i n t c l a t c h , i n t r e s e t , i n t cout , i n t cin , i n t c c l k ) ;
bool conf ig ( Te_samplingRate sampleRate ,

Te_bitsPerSample wordLen ,
Te_i2sNumChannels numChannels ,
Te_i2sClockMode mode) ;

bool enable ( void ) ;
bool d i s a b l e ( void ) ;
bool volume ( f l o a t volume ) ;
bool adcMute ( bool mute ) ;
bool dacMute ( bool mute ) ;
void readAllreg ( void ) ;
bool i n p u t S e l e c t ( i n t n ) {

re turn ( n == 0) ? t rue : f a l s e ;
}

bool inputLevel ( f l o a t volume ) {
re turn f a l s e ;
}
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} ;

3.5 Example Application using AudioControl Ad1938 class

The example Arduino sketch to configure the ad1938 codec using audiocontrolad1938
class is as shown below.

# include " control_ad1938 . h"
AudioControlAD1938 ad1938master ; /∗def ine the c l a s s ∗/

void setup ( ) {

/∗ r e s e t codec and i n i t sp i pins∗/
ad1938master . s p i I n i t ( 7 , 17 , 12 , 11 , 14) ;
/∗ conf igure codec∗/
ad1938master . conf ig ( FS_48000 , BITS_16 , I2S_TDM_16CH , AD1938_I2S_MASTER ) ;
/∗ a d j u s t the volume∗/
ad1938master . volume ( 1 ) ;
/∗power up the adc ∗/
ad1938master . enable ( ) ;
}

void loop ( ) {
// put your main code here , to run repeatedly :

}

3.6 Audio Library TDM Slave Extension

The Audio library of Teensy contains objects classes (as shown in figure 3.6) for receiv-
ing and transmitting the audio. The Audio library contains TDM input and output
object class for 8 channel input and 8 channel output when Teensy is I2S master.

For the current project of daisy chain, we need 8 channel input and 16 channel output
and Teensy as I2S slave. To meet the requirement criteria the AduioOuputTDMSlave
and AudioInputTDMSlave classes are developed and they are derived from AduioOuputTDM
and AduioInputTDM classes respectively.

3.6.1 AudioOutTDMSlave class

The teensy registers are configured for receiving data in slave mode. The function con-
fig_tdm configures the kinetic register.

1. Clock configuration
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FIGURE 3.6: Audio TDM Class Diagram

• Enable clock for I2S module, DMA mux and DMA by setting the registers
below

SIM_SCGC6 |= SIM_SCGC6_I2S ;
SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
SIM_SCGC7 |= SIM_SCGC7_DMA;

• Configure Master clock as slave, selects the input clock zero to the MCLK
divider and set the division register to zero

I2S0_MCR = I2S_MCR_MICS ( 0 ) ;
I2S0_MDR = 0 ;

2. Transmitter configuration :

I2S0_TMR = 0 ; // Enable a l l the b i t s in a word
I2S0_TCR1 = I2S_TCR1_TFW ( 8 ) // s e t the water mark
I2S0_TCR2 = I2S_TCR2_SYNC ( 0 ) | I2S_TCR2_BCP ; //Configured f o r

asynchronous mode of operat ion and B i t c lock i s a c t i v e low with
drive outputs on f a l l i n g edge and sample inputs on r i s i n g edge .

I2S0_TCR3 = I2S_TCR3_TCE ; // A channel i s enabled before FIFO
operat ions
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I2S0_TCR4 = I2S_TCR4_FRSZ ( 1 5 ) | I2S_TCR4_SYWD ( 0 ) | I2S_TCR4_MF
| I2S_TCR4_FSE | I2S_TCR4_FSP ; // Configure number of

channels/ words in a frame , Sync Width , MSB i s
t ransmit ted f i r s t , Frame Sync Early , Frame sync i s
a c t i v e low

I2S0_TCR5 = I2S_TCR5_WNW( 3 1 ) | I2S_TCR5_W0W ( 3 1 ) | I2S_TCR5_FBT ( 3 1 ) ;

// Configure each Word width ( except f i r s t word of the frame ) ,
f i r s t word width and MSB F i r s t B i t S h i f t e d

3. Receiver Configuration

I2S0_RMR = 0 ; // conf igure r e c e i v e word i s enable
I2S0_RCR1 = I2S_RCR1_RFW ( 8 ) ; // s e t the water mark
I2S0_RCR2 = I2S_RCR2_SYNC ( 1 ) | I2S_TCR2_BCP ; //Configured f o r

Synchronous with t r a n s m i t t e r and Clock P o l a r i t y i s s i m i l a r to
t r a n s m i t t e r r e g i s t e r

I2S0_RCR3 = I2S_RCR3_RCE ; // Receive data channel N i s enabled .
I2S0_RCR4 = I2S_RCR4_FRSZ ( 1 5 ) | I2S_RCR4_SYWD ( 0 ) | I2S_RCR4_MF

| I2S_RCR4_FSE | I2S_RCR4_FSP| I2S_RCR4_FSD ; //
Configure number of channels/ words in a frame ,
Sync Width , MSB i s t ransmi t ted f i r s t , Frame Sync
Early , Frame sync i s a c t i v e low

I2S0_RCR5 = I2S_RCR5_WNW( 3 1 ) | I2S_RCR5_W0W ( 3 1 ) | I2S_RCR5_FBT ( 3 1 ) ; //
Configure each Word width ( except f i r s t word of the frame ) , f i r s t

word width and MSB F i r s t B i t S h i f t e d

The following function initializes the transmitter DMA configuration and config-
ures the TDM registers

void AudioOutputTDMslave : : begin ( void )
{

S e r i a l . p r i n t ( "\n AudioOutputTDMslave : begin " ) ;
dma . begin ( t rue ) ; // A l l o c a t e the DMA channel f i r s t

f o r ( i n t i =0 ; i < MAX_CHANNELS; i ++) {
block_input [ i ] = NULL;

}

AudioOutputTDMslave : : config_tdm ( ) ;

// pin 22 , PTC1 , I2S0_TXD0
CORE_PIN22_CONFIG = PORT_PCR_MUX( 6 ) ;

//Memory address point ing to the t r a n s m i t t e r b u f f e r ( source data ) .
dma .TCD−>SADDR = tdm_tx_buffer ;

// O f f s e t value added to current source address to get the next s t a t e
value , once the source read i s completed
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dma .TCD−>SOFF = 4 ;

//Source and d e s t i n a t i o n t r a n s f e r s i z e i s s e t to 32−b i t
dma .TCD−>ATTR = DMA_TCD_ATTR_SSIZE( 2 ) | DMA_TCD_ATTR_DSIZE( 2 ) ;

//Defines the number of bytes to t r a n s f e r per request
dma .TCD−>NBYTES_MLNO = 4 ;

//once major i t e r a t i o n count completes , a value i s added to source
address . This applied value r e s t o r e the source address to the i n i t i a l

value .
dma .TCD−>SLAST = −s i z e o f ( tdm_tx_buffer ) ;

//points the d e s t i n a t i o n data i . e I2S t ransmit r e g i s t e r
dma .TCD−>DADDR = &I2S0_TDR0 ;

// o f f s e t value of d e s t i n a t i o n address i s zero f o r the memory map r e g i s t e r
.
dma .TCD−>DOFF = 0 ;

//The channel−to−channel l i n k i n g i s disabled . CITER represent the Current
Major I t e r a t i o n Count and i t i s decremented f o r each minor loop

completion .
dma .TCD−>CITER_ELINKNO = s i z e o f ( tdm_tx_buffer ) / 4 ;

//no l inked or chained TCD
dma .TCD−>DLASTSGA = 0 ;

// S t a r t i n g Major I t e r a t i o n Count . I n i t i a l l y BITER has same value as CITER
and BITER value i s added in to CITER once major i t e r a t i o n count i s
exhausted
dma .TCD−>BITER_ELINKNO = s i z e o f ( tdm_tx_buffer ) / 4 ;

//Enables the i n t e r r u p t once the major i t e r a t i o n count i s h a l f or f u l l
completed
dma .TCD−>CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;

//Connects the source DMA to I2S transmit
dma . triggerAtHardwareEvent (DMAMUX_SOURCE_I2S0_TX) ;
u p d a t e _ r e s p o n s i b i l i t y = update_setup ( ) ;

// Once TCD r e g i s t e r s are defined , DMA i s enabled
dma . enable ( ) ;

// r e s e t the t r a n s f e r c o n t r o l r e g i s t e r
I2S0_TCSR = I2S_TCSR_SR ;

//Enable the t ranmi t te r , B i t c lock and DMA request
I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE ;

//Map the I n t e r u p t s e r v i c e rout ine to DMA
dma . a t t a c h I n t e r r u p t ( i s r ) ;
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}

3.6.2 AudioInputTDMSlave class

The following function initializes the receiver DMA configuration and configures the
TDM registers

void AudioInputTDMslave : : begin ( void )
{

// S e r i a l . p r i n t ( "\ n AudioInputTDMslave : begin " ) ;
dma . begin ( t rue ) ; // A l l o c a t e the DMA channel f i r s t

AudioOutputTDMslave : : config_tdm ( ) ;

// pin 13 , PTC5 , I2S0_RXD0
CORE_PIN13_CONFIG = PORT_PCR_MUX( 4 ) ;

//Memory address point ing to the I2S Reciever r e g i s t e r
dma .TCD−>SADDR = &I2S0_RDR0 ;

// o f f s e t value of source address i s zero f o r the memory map r e g i s t e r .
dma .TCD−>SOFF = 0 ;

//Source and d e s t i n a t i o n t r a n s f e r s i z e i s s e t to 32−b i t
dma .TCD−>ATTR = DMA_TCD_ATTR_SSIZE( 2 ) | DMA_TCD_ATTR_DSIZE( 2 ) ;

//four bytes are rec ieved per request
dma .TCD−>NBYTES_MLNO = 4 ;

//the value f o r memory map i s zero
dma .TCD−>SLAST = 0 ;

//points the d e s t i n a t i o n data i . e r c e i v e r b u f f e r
dma .TCD−>DADDR = tdm_rx_buffer ;

// O f f s e t value added to current d e s t i n a t i o n address to get the next
s t a t e value , once the rec ieved read i s completed

dma .TCD−>DOFF = 4 ;

//The channel−to−channel l i n k i n g i s disabled . CITER represent the Current
Major I t e r a t i o n Count andi t i s decremented f o r each minor loop

completion .
dma .TCD−>CITER_ELINKNO = s i z e o f ( tdm_rx_buffer ) / 4 ;

//Adjustment value added to d e s t i n a t i o n address a t the completion of
major cont i t e r a t i o n and s e t i t to i n i t i a l value
dma .TCD−>DLASTSGA = −s i z e o f ( tdm_rx_buffer ) ;
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// S t a r t i n g Major I t e r a t i o n Count . I n i t i a l l y BITER has same value as CITER
and BITER value i s added in to CITER once major i t e r a t i o n count i s
exhausted

dma .TCD−>BITER_ELINKNO = s i z e o f ( tdm_rx_buffer ) / 4 ;

//Enables the i n t e r r u p t once the major i t e r a t i o n count i s h a l f or f u l l
completed

dma .TCD−>CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;

//Connects the source DMA to I2S r e c e i v e r
dma . triggerAtHardwareEvent (DMAMUX_SOURCE_I2S0_RX) ;
u p d a t e _ r e s p o n s i b i l i t y = update_setup ( ) ;

// Once TCD r e g i s t e r s are defined , DMA i s enabled
dma . enable ( ) ;

//Enable r e c e i v e r , B i t Clock , DMA Request and Reset FIFO
I2S0_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE | I2S_RCSR_FRDE | I2S_RCSR_FR

;

// TX clock enable , because sync ’d to TX
I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE ;

//Map the I n t e r u p t s e r v i c e rout ine to
DMAdma. a t t a c h I n t e r r u p t ( i s r ) ;

}

3.7 TDM audio data flow

The below diagram 3.7 explains the TDM audio data flow in Teensy Audio application
The AudioInputTDM class receives the data from the I2S_RDR0 register to rx_buffer

through the eDMA. When rx_buffer is half full the DMA generates interrupt. In the in-
terrupt service routine (ISR) the data is separated into different channels and copied
into individual buffers. The Audio library of Teensy contains “AudioConnect” func-
tion which copies data between two objects.

The AudioOputTDM class transmit the data from tx_buffer to I2S_TDR0 through
the eDMA. When tx_buffer is half emptied the DMA generates interrupt. In the inter-
rupt service routine (ISR) the data is combined from different channels and copied to
tx_buffer. When there is no data available then zeros are copied to the tx_buffer.

The PCM pass through application is explained in the form of a flow chart below.(see
Figure 3.8)
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FIGURE 3.7: TDM audio flow class

3.8 Reverb Algorithm

This thesis also includes implementation of freeverb algorithm (reverberation effect)
for the teensy audio library in c++. The figure 3.9 shows the implemenation of freeverb
algorithm using teensy objects.

This implementation uses the input signal from I2S data coming from audio driver
AudioInputTDMslave class. This signal is fed to mixture AudioMixer4 class (mixer1)
which combines left and right channel with gain multiplication. The output of the
mixer1 is given to two freeverb objects ( AudioEffectFreeverb class), one for left chan-
nel reverb and other for the right channel reverb. The Left output can be derived from
mixing the direct input signal (left dry), reverberated left signal (wet1) and reverber-
ated right signal (wet2). Similarly the right output can be derived from mixing the
direct input signal (right dry), reverberated right signal (wet1) and reverberated left
signal (wet2) with appropriate gains received from the user plugin. The left output
from mixer2 and right output from mixer3 are given to output of audio driver Au-
dioOutputTDMslave class to obtain the stereo output signal.

The freeverb objects is drived form the audio stream base class as shown in figure
3.10.
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FIGURE 3.8: Flow chart: The PCM pass through application

The AudioEffectFreeverb class contains initialization and the processing for all-pass
filter, lowpass comb filter. The flow of the freeverb is presented in the update function.
All the filter implementations are done using fixed point arithmetics. The functions are
explained below

prcess_lbcf function (Lowpass com filter implementation)

This function implements the difference equations 2.21 of lowpass comb filter.
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FIGURE 3.9: Freeverb using Teensy objects

FIGURE 3.10: Freeverb object AudioEffectFreeverb

/∗
output = w( n−M) ;
z1 = ( output ∗ (1−d ) ) + ( z1 ∗ d ) ;
w( n−M) = input + ( z1 ∗ f ) ;
∗/
f o r ( n = 0 ; n < AUDIO_BLOCK_SAMPLES; n++)
{

bufout = l b c f −>pbuffer [ l b c f −>buffer Index ] ;
input = in_buf [ n ] ;

sum = mult iply_32x32_rshi f t32_rounded ( bufout , l b c f −>damp2) ;
sum2= mult iply_32x32_rshi f t32_rounded ( l b c f −>sta te_z1 , l b c f −>damp1) ;
l b c f −>s t a t e _ z 1 = ( ( sum + sum2 ) << 2) ;
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sum = mult iply_32x32_rshi f t32_rounded ( l b c f −>sta te_z1 , l b c f −>feedback )
;

sum2 = input + (sum << 2) ;
l b c f −>pbuffer [ l b c f −>buffer Index ] = sum2 ;
out_buf [ n ] = bufout ;
l b c f −>buffer Index ++;
i f ( l b c f −>buffer Index >= l b c f −>delay )
{

l b c f −>buffer Index = 0 ;
}

}

prcess_apf function (All-pass filter implementation)

This function implements the difference equations 2.11 of all-pass filter.

/∗
bufout = w( n−M) ;
w( n−M) = input + bufout ∗ g ;
output = −w( n−M) ∗ g + bufout ;
∗/
f o r ( n = 0 ; n < AUDIO_BLOCK_SAMPLES; n++)
{

bufout = apf−>pbuffer [ apf−>buffer Index ] ;
input = in_buf [ n ] ;
z1 = mult iply_32x32_rshi f t32_rounded ( bufout , apf−>gain ) ;
input += ( z1 << 2) ;
w= mult iply_32x32_rshi f t32_rounded(− input , apf−>gain ) ;
output =bufout +(w << 2) ;
out_buf [ n ] = output ;
apf−>pbuffer [ apf−>buffer Index ] = input ;
apf−>buffer Index ++;
i f ( apf−>buffer Index >= apf−>delay )
{

apf−>buffer Index = 0 ;
}

}

update

The update function combines eight parallel lowpass comb filter and four cascaded
all-pass filter. Each filter is operated on 128 samples as per the requirement of teensy
library.

/∗ input 16 b i t i s convereted to 32 b i t ∗/
arm_q15_to_q31 ( block−>data , q31_buf , AUDIO_BLOCK_SAMPLES) ;

/∗ e i g h t p a r a l l e l lowpass comb f i l t e r s ∗/
p r o c e s s _ l b c f (& l b c f [ 0 ] , q31_buf , sum_buf ) ;
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p r o c e s s _ l b c f (& l b c f [ 1 ] , q31_buf , aux_buf ) ;

arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 2 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 3 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 4 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 5 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 6 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 7 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

/∗ four cascaded a l l−pass f i l t e r s ∗/
process_apf (&apf [ 0 ] , sum_buf , q31_buf ) ;
process_apf (&apf [ 1 ] , q31_buf , q31_buf ) ;
process_apf (&apf [ 2 ] , q31_buf , q31_buf ) ;
process_apf (&apf [ 3 ] , q31_buf , q31_buf ) ;

/∗ f i l t e r output 32 b i t i s converted to 16 b i t ∗/
arm_q31_to_q15 ( q31_buf , block−>data , AUDIO_BLOCK_SAMPLES) ;
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Chapter 4

Evaluation

4.1 Latency

Definition Audio latency is the delay between sound being triggered and then actually
perceived. The reasons for the cause of latency in the audio system are ADCs, DACs,
buffering, digital signal transmission, transmission time, the speed of sound and the
transmission medium. Round-trip time (RTT), also called round-trip delay, is the time
required for a signal pulse or packet to travel from a specific source to a specific desti-
nation and back again. [48].

Evaluation:

The teensy library has audio objects works on the block of 128 samples of 16 bits per
sample. In the receiver interrupt the audio samples are copied when the receiver DMA
buffer is half filled and in the transmitter interrupt audio samples are sent out when
transmitter DMA buffer is half filled.

The round-trip time in the driver is Rx DMA half buffer delay + Tx DMA half buffer
delay. The receiver and transmitter DMA buffer of type 32 bits and it is not changed to
make it compatible with other configurations.

RTT = 2*128 +2*128=512 samples (16 bits per sample)
RTT =512/48 = 10.666 ms

By using oscilloscope the latency can be measured. Oscilloscope captures the trans-
mitted and received signal, the figure 4.1 shows the delay between signal and it is
around 9ms.



Chapter 4. Evaluation 74

FIGURE 4.1: Round trip time

4.2 Buffer Size

Definition:

When recording audio into your computer, your sound card needs some time to pro-
cess the incoming information. The amount of time allotted for processing is called the
Buffer Size[49]. In general low buffer size is preferred as it limits the latency but some-
times it results in a higher burden on the system as it has very little time to process the
audio. When introducing the larger buffer size, the audio delay is generated. So it is
important to find the appropriate buffer size for the session as this can vary depending
on the number of tracks, plug-ins, audio files etc..

Evaluation:

During testing the DMA buffer size is increased from 128 to 256 samples per channel
and by using the oscilloscope the delay between input and the ouput signal is measured
(as shown in figure 4.2 ).The measured delay is around 18ms. As observed when the
DMA buffer size has increased the delay also increases. Smaller DMA size has less
latency but this will increase the interrupts and CPU load. Hence optimal DMA buffer
size must be chosen.
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FIGURE 4.2: Input and output pluse signal with delay

4.3 DSP Benchmark using CPU

CPU Benchmark is very complex to define, this can be measured by a full application or
a single operation [50]. The CPU performance is measured by number of MAC (multi-
ply and accumulate ) operations. These MAC operations are limited by memory access,
pipeline latencies, algorithm feedback requirements, application tasks, operations sys-
tem Kernel system calls.

DSP Benchmarks are measured for the DSP operations like FFT, DCT, FIR. They
typically measured in MIPS (Million instructions per second ) or DMIPS ( Dhrystone-
MIPS). For the ARM processor, DMIPS are used.

Evaluation

The CPU consumption and memory usage can be measured using the available
Teensy Audio library API’s listed below

• processorUsage

• processorUsageMax

• AudioMemoryUsage

• AudioMemoryUsageMax

These APIs calculates the number of CPU cycles taken for processing 128 samples
at the 44.1khz sample rate. The figure shows the CPU consumption and memory uti-
lization by I2S Driver and Freeverb Algorithm.
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FIGURE 4.3: Serial terminal log

4.4 Benefits of DMA

• DMA permits the peripherals, to transfer data directly to or from memory without
CPU involvement

• Kinetic DMA has very flexible control over the data width, data size, and minor
and major loops.

• DMA also generates interrupts at a regular interval (ping pong) during the trans-
fer of data. In this thesis, interrupt are generated when half of the buffer is trans-
ferred.

4.5 Memory foot-print

The following table shows the measured memory details

Component Code Data Details

SPI 1.15kB 0.05kB master and slave Instances

Audio
Driver

3.6kB 97.8kB 16 channel PCM Pass-
through

Freeverb 3.6kB 104.6kB Stereo freeverb

TABLE 4.1: Memory consumption
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4.6 Power Consumption

In electrical engineering, power consumption is the amount of input energy consumed
by the electrical appliances, usually expressed in units of watts (W) or kilowatts (kW).

Evaluation Using multimeter the current and the voltage for the each component is
measured between the Vcc and GND in the full operating mode. The measured values
are summarized in the table 4.2

Component Voltage (V) Current (mA) Power (watts)

Teensy 3.3 80 (180 MHz) 0.264

AD1938
(master)

5 100 0.5

AD1938
(slave)

5 100 0.5

TABLE 4.2: power consumption
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Chapter 5

Discussion / Limitations

5.1 Discuss results and findings

This section discusses the results and findings of this thesis. The discussion is presented
in two primary parts. First, development of Audio Driver. Second, Implementation of
Freeverb Algorithm.

During the study of this thesis, I did research on open source ecosystem. The open
source software has to be developed in time, must be more generic, it should be freely
available to all the programmer with non-restricted or limited restriction license and
must provide freedom to modify, review and redistribute the software or code. This
kind of approach is must faster and more efficient and results in better quality.

I got familiar with the open source operating system and their licenses. Did the ba-
sic study on a linux based platform like BeagleBoard, Raspberry Pi, Arduino Yún and
Intel Galileo. Also studied non-Linux based embedded devices like Arduino, Adafruit
Flora, LightBlue Bean.

During the course of the thesis, I have studied the teensy data specifications and
various generations of teensy hardwares. I found that teensy 3.6 very powerful micro-
controller and compatible with Arduino software and libraries. The open source Teensy
audio library is distributed under MIT-like license.

Through my literature study, I found out that the Teensy Audio library has support
for the control of various multi-channel audio codecs. All the codec are controlled us-
ing Inter-Integrated Circuit (I2C) bus and codecs are configured as Inter-IC Sound (I2S)
slave and teensy as Inter-IC Sound master with the maximum support of 8 channels in
Time-division multiplexing mode.

Since teensy audio library provides no support for the AD1938 codec, I have de-
veloped the AD1938 audio control class and it is derived from the base class "Audio-
Control" which is present in the audio library. This class has two function, SPI port
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control and AD1938 codec control. I have developed API’s of SPI read and write func-
tions for AD1938. The AD1938 codec contains 17 registers to configure Phase-locked
loops (PLL), Analog to digital converter (ADC), Digital to Analog converter (DAC). I
have configured these registers to achieve high-level function like configure, Enable,
Disable, Volume, Mute and Unmute.

To support daisy chain mode, I have developed multi-instance Serial Peripheral In-
terface(SPI) control class to configure two AD1938 codecs simultaneously.

Extensively studied Teensy audio library data flow and I2S input/ output classes
and also studied the MK66FX1M0VMD18 Kinetics processor control registers to con-
figure Direct memory access and Inter-IC Sound clocks.

The audio library of teensy contains object classes for receiving and transmitting
the audio. when teensy is master, this library has support for 8 input channels and 8
output channels. The two main objectives of this thesis are to make teensy as slave
and to connect two codecs and teensy in daisy chain mode as shown in figure 3.2 and
generate 8 input channel and 16 output channels. To achieve the above objectives, the
AduioOuputTDMSlave and AudioInputTDMSlave classes are developed which con-
figures clock, transmitter, receiver and enhanced Direct Memory Access. By using
Pulse-code modulation (PCM) pass through code and synthesized sine tone, the de-
veloped I2S driver is tested and verified for 8 input channels and 16 output channels.

In the second part of the thesis, the reverb effect is added to the teensy audio library.
During the study phase, many artificial digital reverberation algorithms like Schroeder,
Moorer, Gardner and others were studied. It is observed that the comb filters produce
the long echoes that occur between the walls. but parallel comb filter doesn’t produce
enough echo density as in realistic solution. To increase the echo density the paral-
lel comb filter output is fed to all-pass filters connected in series. These all-pass filter
multipliers the echoes. The low pass filter is added to the comb filter to simulate the fre-
quency dependent air absorption and increase echo density. The freeverb open source
algorithm, developed by Jezar has similar structure like Schroeder-Moorer reverbera-
tor. This algorithm has eight lowpass comb filters in parallel and four all-pass filters in
series.

The Freeverb Algorithm for Teensy is implemented using Fixed point arithmetics
so that the source code developed can be used with all teensy variants, which doesn’t
have floating processing unit. The fixed point implementation also reduces the CPU
computational and increases the precision for both left and right channels. The rever-
beration effect is analyzed by varying the feedback, damping factors of comb filter and
gain of the all-pass filter. The freeverb Algorithm is tested in real time by giving I2S
input and verified the effects by listening to the I2S output channel.
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5.2 what could not be achieved

There are few limitations of this thesis. First, this thesis are the audio driver is tested
with 48KHz sampling rate only, higher sampling rates like 96KHz, 128KHz more are
not tested. Second, freeverb is implemented with the predefined fixed delay lengths,
rather than variable delay length so the memory consumption for various reverberation
time cannot be evaluated. Third, in freeverb, the precision between the fixed point and
the floating point implementation are not evaluated. and the last, it was difficult to
publish the source code in the teensy open source audio library, as the moderators did
not respond to my mail.
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Chapter 6

Conclusion

6.1 Conclusion

The main purpose of this thesis was to develop an audio driver for teensy using sound-
card CTAG 2/4 and implement the freeverb algorithm. The Audiocontrol class using
SPI drivers was developed to initialize and configure the AD1938 codec for various I2S
modes. This Audiocontrol class also supports volume control and mute. Analyzed the
existing I2S input/ output TDM class for the I2S master and developed the derived I2S
Input/output TDM in slave mode. Later, this class was extended to support 16 input
channels and 16 output channels. By understanding the AD1938 control registers, two
soundcards are connected in daisy chain mode which supports 8 input audio channels
and 16 audio output channels. The I2S driver latency is measured using an oscillo-
scope as 10.66 ms. A PCM pass-through code with existing audio library objects is
created and tested. As the system supports only 8 input channels, internally generated
sine tone was used to verify the other output channels. After the PCM pass through,
this thesis added reverb effect using the open source freeverb algorithm in fixed-point
arithmetic for the fixed delay length. This algorithm is tested in the real time by giving
I2s audio input and varied the reverberation effects.

As a future extension one can adjust the delay length to increase the reverberation
time. In the current implementation, the internal delay buffers are of size 32 bits width,
the buffer width can be carefully optimized to 16 bit. There is a scope for the optimiza-
tion in the interrupt service routine(ISR) of transmitter and receiver.
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Appendix A

Appendix

The source code can be found on the github
1. Audio control class https://github.com/yasmeensultana/ad1938_codec
2. Freeverb https://github.com/yasmeensultana/freeverb

Control_ad1938.h

/∗ AD1938 Audio Codec c o n t r o l l i b r a r y
∗
∗ Copyright ( c ) 2017 , Yasmeen Sultana
∗
∗
∗ Permission i s hereby granted , f r e e of charge , to any person obta in ing a

copy
∗ of t h i s software and a s s o c i a t e d documentation f i l e s ( the " Software " ) , to

deal
∗ in the Software without r e s t r i c t i o n , inc luding without l i m i t a t i o n the

r i g h t s
∗ to use , copy , modify , merge , publish , d i s t r i b u t e , subl i cense , and/or s e l l
∗ copies of the Software , and to permit persons to whom the Software i s
∗ furnished to do so , s u b j e c t to the fol lowing condi t ions :
∗
∗ The above copyright not ice , development funding not ice , and t h i s permission
∗ n o t i c e s h a l l be included in a l l copies or s u b s t a n t i a l por t ions of the

Software .
∗
∗ THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
∗ IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
∗ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
∗ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
∗ LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,
∗ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
∗ THE SOFTWARE.
∗/

# i f n d e f _CONTROL_AD1938_H_
# def ine _CONTROL_AD1938_H_

# include " AudioControl . h "

https://github.com/yasmeensultana/ad1938_codec
https://github.com/yasmeensultana/freeverb
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/∗SPI ∗/
# def ine AD1938_SPI_CLK_FREQ 1000000
# def ine AD1938_SPI_CHIP_SEL 7 /∗ teensy 3 . 6 gpio∗/
# def ine AD1938_SPI_SCK 14 /∗ teensy 3 . 6 gpio∗/
# def ine AD1938_RESET 17 /∗ teensy 3 . 6 gpio∗/

/∗sampling r a t e ∗/
typedef enum
{

FS_32000 ,
FS_44100 ,
FS_48000 ,
FS_64000 ,
FS_88200 ,
FS_96000 ,
FS_128000 ,
FS_176400 ,
FS_192000 ,

} Te_samplingRate ;

/∗number of b i t s per sample∗/
typedef enum
{

BITS_16 ,
BITS_20 ,
BITS_24 ,

} Te_bitsPerSample ;

/∗ I 2 s c lock mode∗/
typedef enum
{

AD1938_I2S_SLAVE ,
AD1938_I2S_MASTER ,

} Te_i2sClockMode ;

/∗ I 2 s number of channels ∗/
typedef enum
{

I2S_STEREO_2CH ,
I2S_TDM_8CH ,
I2S_TDM_16CH

} Te_i2sNumChannels ;

c l a s s AudioControlAD1938 : publ ic AudioControl
{
publ ic :

bool s p i I n i t ( i n t c l a t c h , i n t r e s e t , i n t cout , i n t cin , i n t c c l k ) ;
bool conf ig ( Te_samplingRate sampleRate , Te_bitsPerSample wordLen ,

Te_i2sNumChannels numChannels , Te_i2sClockMode mode) ;
bool enable ( void ) ;
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bool d i s a b l e ( void ) ;
bool volume ( f l o a t volume ) ;
bool adcMute ( bool mute ) ;
bool dacMute ( bool mute ) ;
void readAllreg ( void ) ;
bool i n p u t S e l e c t ( i n t n ) {

re turn ( n == 0) ? t rue : f a l s e ;
}
bool inputLevel ( f l o a t volume ) {

re turn f a l s e ;
}

p r i v a t e :
i n t ad1938_c latch ;
i n t ad1938_reset ;
i n t ad1938_cout ;
i n t ad1938_cin ;
i n t ad1938_cclk ;
Te_i2sClockMode i2sMode ;
Te_bitsPerSample wordLen ;
Te_i2sNumChannels numChannels ;
Te_samplingRate samplingRate ;

protec ted :
bool sp i_wr i te_reg ( unsigned char reg , unsigned char val ) ;
unsigned char spi_read_reg ( unsigned char reg ) ;
bool i sP l lLocked ( ) ;
bool dacVolume ( i n t dac_num , i n t volume ) ;

} ;

# endi f // ! _CONTROL_AD1938_H_

control_ad1938.cpp

/∗ AD1938 Audio Codec c o n t r o l l i b r a r y
∗
∗ Copyright ( c ) 2017 , Yasmeen Sultana
∗
∗
∗ Permission i s hereby granted , f r e e of charge , to any person obta in ing a

copy
∗ of t h i s software and a s s o c i a t e d documentation f i l e s ( the " Software " ) , to

deal
∗ in the Software without r e s t r i c t i o n , inc luding without l i m i t a t i o n the

r i g h t s
∗ to use , copy , modify , merge , publish , d i s t r i b u t e , subl i cense , and/or s e l l
∗ copies of the Software , and to permit persons to whom the Software i s
∗ furnished to do so , s u b j e c t to the fol lowing condi t ions :
∗
∗ The above copyright not ice , development funding not ice , and t h i s permission
∗ n o t i c e s h a l l be included in a l l copies or s u b s t a n t i a l por t ions of the

Software .
∗
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∗ THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
∗ IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
∗ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
∗ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
∗ LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,
∗ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
∗ THE SOFTWARE.
∗/
# include " control_ad1938 . h"

# inc lude <SPI . h>

/∗
r e f e r e n c e
http ://www. analog . com/media/en/ t e c h n i c a l−documentation/data−s h e e t s/AD1938 . pdf
ht tp ://www. analog . com/media/en/ t e c h n i c a l−documentation/appl i ca t io n−notes/AN

−1365. pdf
∗/
/∗ SPI 3 byte r e g i s t e r format
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
|Global Address |R/W | R e g i s t e r Address |Data |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
|23:17 |16 |15:8 | 7:0|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Address R e g i s t e r
0 PLL and Clock Control 0
1 PLL and Clock Control 1
2 DAC Control 0
3 DAC Control 1
4 DAC Control 2
5 DAC indiv idua l channel mutes
6 DAC L1 volume c o n t r o l
7 DAC R1 volume c o n t r o l
8 DAC L2 volume c o n t r o l
9 DAC R2 volume c o n t r o l
10 DAC L3 volume c o n t r o l
11 DAC R3 volume c o n t r o l
12 DAC L4 volume c o n t r o l
13 DAC R4 volume c o n t r o l
14 ADC Control 0
15 ADC Control 1
16 ADC Control 2
∗/

/∗The globa l address f o r the AD1938 i s 0x04 , s h i f t e d l e f t one b i t due to the
R/W b i t . ∗/

# def ine AD1938_GLOBAL_ADDRESS 0x04

# def ine AD1938_WRITE_ADDRESS (AD1938_GLOBAL_ADDRESS<<1)
# def ine AD1938_READ_ADDRESS ( ( AD1938_GLOBAL_ADDRESS<<1) |1)
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# def ine AD1938_SPI_WRITE_BYTE_COUNT 3
# def ine AD1938_SPI_READ_BYTE_COUNT 2

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

/∗PLL and Clock Control 0
∗/

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

# def ine AD1938_PLL_CLK_CTRL0 0x00

/∗
B i t Value Function Descr ipt ion
0 0 Normal operat ion PLL power−down
1 Power−down
2 : 1 00 INPUT 256 ( 4 4 . 1 kHz or 48 kHz) MCLKI/XI pin f u n c t i o n a l i t y ( PLL a c t i v e

) , master c lock r a t e s e t t i n g
01 INPUT 384 ( 4 4 . 1 kHz or 48 kHz)
10 INPUT 512 ( 4 4 . 1 kHz or 48 kHz)
11 INPUT 768 ( 4 4 . 1 kHz or 48 kHz)

4 : 3 00 XTAL o s c i l l a t o r enabled MCLKO/XO pin , master c lock r a t e s e t t i n g
01 256 ∗ fS VCO output
10 512 ∗ fS VCO output
11 Off

6 : 5 00 MCLKI/XI PLL input
01 DLRCLK
10 ALRCLK
11 Reserved

7 0 Disable : ADC and DAC i d l e I n t e r n a l master c lock enable
1 Enable : ADC and DAC a c t i v e

∗/

# def ine DIS_ADC_DAC (0 x00 )
# def ine ENA_ADC_DAC (0 x80 )

# def ine PLL_IN_MCLK (0 x00 )
# def ine PLL_IN_DLRCLK (0 x20 )
# def ine PLL_IN_ALRCLK (0 x40 )

# def ine MCLK_OUT_XTAL (0 x00 )
# def ine MCLK_OUT_256FS (0 x08 )
# def ine MCLK_OUT_512FS (0 x10 )
# def ine MCLK_OUT_OFF (0 x18 )

# def ine INPUT256 (0 x00 )
# def ine INPUT384 (0 x02 )
# def ine INPUT512 (0 x04 )
# def ine INPUT768 (0 x06 )
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# def ine PLL_PWR_UP (0 x00 )
# def ine PLL_PWR_DWN (0 x01 )

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

/∗PLL and Clock Control 1
∗/

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

# def ine AD1938_PLL_CLK_CTRL1 0x01
/∗
B i t Value Function Descr ipt ion
0 0 PLL clock DAC clock source s e l e c t
1 MCLK
1 0 PLL clock ADC clock source s e l e c t
1 MCLK
2 0 Enabled On−chip vol tage r e f e r e n c e
1 Disabled
3 0 Not locked PLL lock i n d i c a t o r ( read−only )

1 Locked
7 : 4 0000 Reserved
∗/
# def ine AD1938_PLL_LOCK (0 x08 )

# def ine DIS_VREF (0 x04 )
# def ine ENA_VREF (0 x00 )

# def ine ADC_CLK_PLL (0 x00 )
# def ine ADC_CLK_MCLK (0 x20 )

# def ine DAC_CLK_PLL (0 x00 )
# def ine DAC_CLK_MCLK (0 x01 )

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

/∗ DAC Control 0
∗/

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

# def ine AD1938_DAC_CTRL0 0x02
/∗
B i t Value Function Descr ipt ion
0 0 Normal Power−down
1 Power−down
2 : 1 00 32 kHz/44.1 kHz/48 kHz Sample r a t e

01 64 kHz/88.2 kHz/96 kHz
10 128 kHz/176.4 kHz/192 kHz
11 Reserved
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5 : 3 000 1 SDATA delay (BCLK periods )
001 0
010 8
011 12
100 16
101 Reserved
110 Reserved
111 Reserved

7 : 6 00 Stereo ( normal ) S e r i a l format
01 TDM ( daisy chain )
10 DAC AUX mode (ADC−, DAC−, TDM−coupled )
11 Dual−l i n e TDM

∗/
# def ine DAC_FMT_I2S (0 x00 )
# def ine DAC_FMT_TDM (0 x40 )
# def ine DAC_FMT_AUX (0 x80 )
# def ine DAC_FMT_DUALTDM (0 xc0 )

# def ine DAC_BCLK_DLY_1 (0 x00 )
# def ine DAC_BCLK_DLY_0 (0 x08 )
# def ine DAC_BCLK_DLY_8 (0 x01 )
# def ine DAC_BCLK_DLY_12 (0 x18 )
# def ine DAC_BCLK_DLY_16 (0 x20 )

# def ine DAC_SR_48K (0 x00 )
# def ine DAC_SR_96K (0 x02 )
# def ine DAC_SR_192K (0 x04 )

# def ine DAC_PWR_UP (0 x00 )
# def ine DAC_PWR_DWN (0 x01 )
/∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

/∗ DAC Control 1
∗/

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

# def ine AD1938_DAC_CTRL1 0x03

/∗
B i t Value Function Descr ipt ion
0 0 Latch in mid c y c l e ( normal ) BCLK a c t i v e edge (TDM in )
1 Latch in a t end of c y c l e ( p i p e l i n e )
2 : 1 00 64 (2 channels ) BCLKs per frame

01 128 (4 channels )
10 256 (8 channels )
11 512 (16 channels )

3 0 L e f t low LRCLK p o l a r i t y
1 L e f t high

4 0 Slave LRCLK master/s lave



Appendix A. Appendix 93

1 Master
5 0 Slave BCLK master/s lave

1 Master
6 0 DBCLK pin BCLK source

1 I n t e r n a l l y generated
7 0 Normal BCLK p o l a r i t y

1 Inverted
∗/

# def ine DAC_BCLK_POL_NORM (0 x00 )
# def ine DAC_BCLK_POL_INV (0 x80 )

# def ine DAC_BCLK_SRC_PIN (0 x00 )
# def ine DAC_BCLK_SRC_INTERNAL (0 x40 )

# def ine DAC_BCLK_SLAVE (0 x00 )
# def ine DAC_BCLK_MASTER (0 x20 )

# def ine DAC_LRCLK_SLAVE (0 x00 )
# def ine DAC_LRCLK_MASTER (0 x10 )

# def ine DAC_LRCLK_POL_NORM (0 x00 )
# def ine DAC_LRCLK_POL_INV (0 x08 )

# def ine DAC_CHANNELS_2 (0 x00 )
# def ine DAC_CHANNELS_4 (0 x02 )
# def ine DAC_CHANNELS_8 (0 x04 )
# def ine DAC_CHANNELS_16 (0 x06 )

# def ine DAC_LATCH_MID (0 x00 )
# def ine DAC_LATCH_END (0 x01 )
/∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

/∗ DAC Control 2
∗/

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

/∗
B i t Value Function Descr ipt ion
0 0 Unmute Master mute
1 Mute
2 : 1 00 F l a t De−emphasis (32 kHz/44.1 kHz/48 kHz mode only )

01 48 kHz curve
10 4 4 . 1 kHz curve
11 32 kHz curve

4 : 3 00 24 Word width
01 20
10 Reserved
11 16

5 0 Noninverted DAC output p o l a r i t y
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1 Inverted
7 : 6 00 Reserved
∗/
# def ine AD1938_DAC_CTRL2 0x04
# def ine DAC_OUT_POL_NORM (0 x00 )
# def ine DAC_OUT_POL_INV (0 x20 )

# def ine DAC_WIDTH_24 (0 x00 )
# def ine DAC_WIDTH_20 (0 x08 )
# def ine DAC_WIDTH_16 (0 x18 )

# def ine DAC_DEEMPH_FLAT (0 x00 )
# def ine DAC_DEEMPH_48K (0 x02 )
# def ine DAC_DEEMPH_44_1K (0 x04 )
# def ine DAC_DEEMPH_32K (0 x06 )

# def ine DAC_UNMUTE_ALL (0 x00 )
# def ine DAC_MUTE_ALL (0 x01 )
/∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

/∗ DAC indiv idua l channel mutes
∗/

/∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

# def ine AD1938_DAC_CHNL_MUTE 0x05
/∗
B i t Value Function Descr ipt ion
0 0 Unmute DAC 1 l e f t mute

1 Mute
1 0 Unmute DAC 1 r i g h t mute

1 Mute
2 0 Unmute DAC 2 l e f t mute

1 Mute
3 0 Unmute DAC 2 r i g h t mute

1 Mute
4 0 Unmute DAC 3 l e f t mute

1 Mute
5 0 Unmute DAC 3 r i g h t mute

1 Mute
6 0 Unmute DAC 4 l e f t mute

1 Mute
7 0 Unmute DAC 4 r i g h t mute

1 Mute
∗/
# def ine DACMUTE_R4 (0 x80 )
# def ine DACMUTE_L4 (0 x40 )
# def ine DACMUTE_R3 (0 x20 )
# def ine DACMUTE_L3 (0 x10 )
# def ine DACMUTE_R2 (0 x08 )
# def ine DACMUTE_L2 (0 x04 )
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# def ine DACMUTE_R1 (0 x02 )
# def ine DACMUTE_L1 (0 x01 )

/∗
B i t Value Function Descr ipt ion
7 : 0 0 No a t t e n u a t i o n DAC volume c o n t r o l
1 to 254 −3/8 dB per step
255 F u l l a t t e n u a t i o n

∗/
# def ine DACVOL_MIN (0 xFF )
# def ine DACVOL_LOW (0 xC0 )
# def ine DACVOL_MED (0 x80 )
# def ine DACVOL_HI (0 x40 )
# def ine DACVOL_MAX (0 x00 ) // 0db Volume
# def ine DACVOL_MASK (0 xFF )
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗DAC L1 volume c o n t r o l ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
# def ine AD1938_DAC_L1_VOL 0x06
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗DAC R1 volume c o n t r o l ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
# def ine AD1938_DAC_R1_VOL 0x07
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗DAC L2 volume c o n t r o l ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
# def ine AD1938_DAC_L2_VOL 0x08
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗DAC R2 volume c o n t r o l

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
# def ine AD1938_DAC_R2_VOL 0x09
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗DAC L3 volume c o n t r o l

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
# def ine AD1938_DAC_L3_VOL 0x0a

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗DAC R3 volume c o n t r o l

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
# def ine AD1938_DAC_R3_VOL 0x0b

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗DAC L4 volume c o n t r o l

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
# def ine AD1938_DAC_L4_VOL 0 x0c
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
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/∗DAC R4 volume c o n t r o l
∗/

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
# def ine AD1938_DAC_R4_VOL 0x0d

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ ADC Control 0 ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
# def ine AD1938_ADC_CTRL0 0 x0e
/∗
B i t Value Function Descr ipt ion
0 0 Normal Power−down

1 Power down
1 0 Off High−pass f i l t e r

1 On
2 0 Unmute ADC L1 mute

1 Mute
3 0 Unmute ADC R1 mute

1 Mute
4 0 Unmute ADC L2 mute

1 Mute
5 0 Unmute ADC R2 mute

1 Mute
7 : 6 00 32 kHz/44.1 kHz/48 kHz Output sample r a t e

01 64 kHz/88.2 kHz/96 kHz
10 128 kHz/176.4 kHz/192 kHz
11 Reserved

∗/
# def ine ADC_SR_48K (0 x00 )
# def ine ADC_SR_96K (0 x40 )
# def ine ADC_SR_192K (0 x80 )

# def ine ADC_R2_UNMUTE (0 x00 )
# def ine ADC_R2_MUTE (0 x20 )

# def ine ADC_L2_UNMUTE (0 x00 )
# def ine ADC_L2_MUTE (0 x10 )

# def ine ADC_R1_UNMUTE (0 x00 )
# def ine ADC_R1_MUTE (0 x08 )

# def ine ADC_L1_UNMUTE (0 x00 )
# def ine ADC_L1_MUTE (0 x04 )

# def ine ADC_HP_FILT_OFF (0 x00 )
# def ine ADC_HP_FILT_ON (0 x02 )

# def ine ADC_PWR_UP (0 x00 )
# def ine ADC_PWR_DWN (0 x01 )
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ ADC Control 01 ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
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# def ine AD1938_ADC_CTRL1 0 x0f
/∗
B i t Value Function Descr ipt ion
1 : 0 00 24 Word width

01 20
10 Reserved
11 16

4 : 2 000 1 SDATA delay (BCLK periods )
001 0
010 8
011 12
100 16
101 Reserved
110 Reserved
111 Reserved

6 : 5 00 Stereo S e r i a l format
01 TDM ( daisy chain )
10 ADC AUX mode (ADC−, DAC−, TDM−coupled )
11 Reserved

7 0 Latch in mid c y c l e ( normal ) BCLK a c t i v e edge (TDM in )
1 Latch in a t end of c y c l e ( p i p e l i n e )

∗/
# def ine ADC_LATCH_MID (0 x00 )
# def ine ADC_LATCH_END (0 x80 )

# def ine ADC_FMT_I2S (0 x00 )
# def ine ADC_FMT_TDM (0 x20 )
# def ine ADC_FMT_AUX (0 x40 )

# def ine ADC_BCLK_DLY_1 (0 x00 )
# def ine ADC_BCLK_DLY_0 (0 x04 )
# def ine ADC_BCLK_DLY_8 (0 x08 )
# def ine ADC_BCLK_DLY_12 (0 x0c )
# def ine ADC_BCLK_DLY_16 (0 x10 )

# def ine ADC_WIDTH_24 (0 x00 )
# def ine ADC_WIDTH_20 (0 x01 )
# def ine ADC_WIDTH_16 (0 x03 )
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ ADC Control 2 ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
# def ine AD1938_ADC_CTRL2 0x10
/∗
B i t Value Function Descr ipt ion
0 0 50/50 ( al lows 32 , 24 , 20 , or 16 b i t c l o c k s (BCLKs) per channel ) LRCLK

format
1 Pulse (32 BCLKs per channel )

1 0 Drive out on f a l l i n g edge (DEF) BCLK p o l a r i t y
1 Drive out on r i s i n g edge

2 0 L e f t low LRCLK p o l a r i t y
1 L e f t high

3 0 Slave LRCLK master/s lave
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1 Master
5 : 4 00 64 BCLKs per frame

01 128
10 256
11 512

6 0 Slave BCLK master/s lave
1 Master

7 0 ABCLK pin BCLK source
1 I n t e r n a l l y generated

∗/

# def ine ADC_BCLK_SRC_PIN (0 x00 )
# def ine ADC_BCLK_SRC_INTERNAL (0 x80 )

# def ine ADC_BCLK_SLAVE (0 x00 )
# def ine ADC_BCLK_MASTER (0 x40 )

# def ine ADC_CHANNELS_2 (0 x00 )
# def ine ADC_CHANNELS_4 (0 x10 )
# def ine ADC_CHANNELS_8 (0 x20 )
# def ine ADC_CHANNELS_16 (0 x30 )

# def ine ADC_LRCLK_SLAVE (0 x00 )
# def ine ADC_LRCLK_MASTER (0 x08 )

# def ine ADC_LRCLK_POL_NORM (0 x00 )
# def ine ADC_LRCLK_POL_INV (0 x04 )

# def ine ADC_BCLK_POL_NORM (0 x00 )
# def ine ADC_BCLK_POL_INV (0 x02 )

# def ine ADC_LRCLK_FMT_50_50 (0 x00 )
# def ine ADC_LRCLK_FMT_PULSE (0 x01 )

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ i n i t ( void ) ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool AudioControlAD1938 : : s p i I n i t ( i n t c l a t c h , i n t r e s e t , i n t cout , i n t cin , i n t

c c l k )
{

ad1938_clatch = c l a t c h ;
ad1938_reset = r e s e t ;
ad1938_cout = cout ;
ad1938_cin = c in ;
ad1938_cclk = c c l k ;

/∗∗/
pinMode ( ad1938_clatch , OUTPUT) ;
pinMode ( ad1938_reset , OUTPUT) ;

/∗SPI c lock pin s e t ∗/
// SPI . setMOSI ( c in ) ;
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//SPI . setMISO ( cout ) ;
SPI . setSCK ( c c l k ) ; /∗SPI c lock a l t e r n a t e pin 14∗/
SPI . begin ( ) ;

/∗ r e s e t codec∗/
d i g i t a l W r i t e ( ad1938_reset , LOW) ;
delay ( 2 0 0 ) ;
d i g i t a l W r i t e ( ad1938_reset , HIGH) ;
delay ( 4 0 0 ) ; //wait f o r 300ms to load the code

return true ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ spi_read_reg ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
unsigned char AudioControlAD1938 : : spi_read_reg ( unsigned char reg )
{

unsigned char r e s u l t = 0 ;
unsigned char data [AD1938_SPI_WRITE_BYTE_COUNT ] ;

data [ 0 ] = AD1938_READ_ADDRESS ;
data [ 1 ] = reg ;
data [ 2 ] = 0x0 ;

// and conf igure s e t t i n g s
SPI . beginTransact ion ( S P I S e t t i n g s ( AD1938_SPI_CLK_FREQ , MSBFIRST ,

SPI_MODE3) ) ;
// take the chip s e l e c t low to s e l e c t the device :
d i g i t a l W r i t e ( ad1938_clatch , LOW) ;

SPI . t r a n s f e r (&data [ 0 ] , AD1938_SPI_READ_BYTE_COUNT) ; //Send r e g i s t e r
l o c a t i o n , read byte i s 2

// send a value of 0 to read the f i r s t byte returned :
r e s u l t =( unsigned char ) SPI . t r a n s f e r (0 x00 ) ;

// take the chip s e l e c t high to de−s e l e c t :
d i g i t a l W r i t e ( ad1938_clatch , HIGH) ;
// r e l e a s e c o n t r o l of the SPI port
SPI . endTransaction ( ) ;

re turn ( r e s u l t ) ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ sp i_wr i te_reg

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool AudioControlAD1938 : : sp i_wr i te_reg ( unsigned char reg , unsigned char val )
{
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unsigned char data [AD1938_SPI_WRITE_BYTE_COUNT ] ;

/∗ f i l l the b u f f e r as per AD1938 format∗/
data [ 0 ] = AD1938_WRITE_ADDRESS ;
data [ 1 ] = reg ;
data [ 2 ] = val ;

// and conf igure s e t t i n g s
SPI . beginTransact ion ( S P I S e t t i n g s ( AD1938_SPI_CLK_FREQ , MSBFIRST ,

SPI_MODE3) ) ;
// take the chip s e l e c t low to s e l e c t the device :

d i g i t a l W r i t e ( ad1938_clatch , LOW) ;

SPI . t r a n s f e r (&data [ 0 ] , AD1938_SPI_WRITE_BYTE_COUNT) ;
// take the chip s e l e c t high to de−s e l e c t :
d i g i t a l W r i t e ( ad1938_clatch , HIGH) ;
// r e l e a s e c o n t r o l of the SPI port
SPI . endTransaction ( ) ;

re turn true ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ i n i t ( void )

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool AudioControlAD1938 : : conf ig ( Te_samplingRate sampleRate ,

Te_bitsPerSample wordLen ,
Te_i2sNumChannels

numChannels
,

Te_i2sClockMode
mode)

{

unsigned char dac_fs = 0 ;
unsigned char adc_fs = 0 ;
unsigned char dac_mode = 0 ;
unsigned char adc_mode = 0 ;
unsigned char dac_wl = 0 ;
unsigned char adc_wl = 0 ;
unsigned char dac_channels = 0 ;
unsigned char adc_channels = 0 ;

i2sMode = mode ;
wordLen = wordLen ;
numChannels = numChannels ;
samplingRate = sampleRate ;
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switch ( sampleRate )
{

case FS_32000 :
case FS_44100 :
case FS_48000 :
{

dac_fs = DAC_SR_48K ;
adc_fs = ADC_SR_48K ;

}
break ;

case FS_64000 :
case FS_88200 :
case FS_96000 :

{
dac_fs = DAC_SR_96K ;
adc_fs = ADC_SR_96K ;

}
break ;

case FS_128000 :
case FS_176400 :
case FS_192000 :

{
dac_fs = DAC_SR_192K ;
adc_fs = ADC_SR_192K ;

}
break ;

d e f a u l t :
{

dac_fs = DAC_SR_48K ;
adc_fs = ADC_SR_48K ;

}
}

switch ( wordLen )
{

case BITS_16 :
{

dac_wl = DAC_WIDTH_16 ;
adc_wl = ADC_WIDTH_16 ;

}
break ;

case BITS_20 :
{

dac_wl = DAC_WIDTH_20 ;
adc_wl = ADC_WIDTH_20 ;

}
break ;

case BITS_24 :
{
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dac_wl = DAC_WIDTH_24 ;
adc_wl = ADC_WIDTH_24 ;

}

break ;

d e f a u l t :
{

dac_wl = DAC_WIDTH_24 ;
adc_wl = ADC_WIDTH_24 ;

}
}

switch ( numChannels )
{

case I2S_STEREO_2CH :
{

dac_mode = DAC_FMT_I2S ;
adc_mode = ADC_FMT_I2S ;
dac_channels = DAC_CHANNELS_2;

adc_channels = ADC_CHANNELS_2;

}
break ;

case I2S_TDM_8CH :
{

dac_mode = DAC_FMT_TDM;
adc_mode = ADC_FMT_TDM;
dac_channels = DAC_CHANNELS_8;

adc_channels = ADC_CHANNELS_8;

}
break ;

case I2S_TDM_16CH :
{

dac_mode = DAC_FMT_TDM;
adc_mode = ADC_FMT_TDM;
dac_channels = DAC_CHANNELS_16;

adc_channels = ADC_CHANNELS_16;

}
break ;

d e f a u l t :
{

dac_mode = DAC_FMT_I2S ;
adc_mode = ADC_FMT_I2S ;
dac_channels = DAC_CHANNELS_2;

adc_channels = ADC_CHANNELS_2;
}

}
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i f (mode == AD1938_I2S_SLAVE )
{

//0 PLL and Clock Control 0
sp i_wr i te_reg ( AD1938_PLL_CLK_CTRL0 , (DIS_ADC_DAC | INPUT512 |

PLL_IN_ALRCLK | MCLK_OUT_OFF |PLL_PWR_DWN) ) ;

//1 PLL and Clock Control 1
sp i_wr i te_reg ( AD1938_PLL_CLK_CTRL1 , (DAC_CLK_PLL | ADC_CLK_PLL |

ENA_VREF) ) ;

//2 DAC Control 0
sp i_wr i te_reg (AD1938_DAC_CTRL0 , ( dac_mode | DAC_BCLK_DLY_1 | dac_fs |

DAC_PWR_UP) ) ;

//3 DAC Control 1
sp i_wr i te_reg (AD1938_DAC_CTRL1 , ( DAC_BCLK_SRC_PIN|DAC_BCLK_SLAVE|

DAC_LRCLK_SLAVE |DAC_LRCLK_POL_NORM | dac_channels |
DAC_LATCH_MID) ) ;

//4 DAC Control 2
sp i_wr i te_reg (AD1938_DAC_CTRL2 , dac_wl ) ;

//5 DAC indiv idua l channel mutes
sp i_wr i te_reg (AD1938_DAC_CHNL_MUTE, 0x00 ) ; /∗mute∗/

//6 DAC L1 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_L1_VOL , DACVOL_MAX) ;

//7 DAC R1 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_R1_VOL , DACVOL_MAX) ;

//8 DAC L2 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_L2_VOL , DACVOL_MAX) ;

//9 DAC R2 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_R2_VOL , DACVOL_MAX) ;

//10 DAC L3 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_L3_VOL , DACVOL_MAX) ;

//11 DAC R3 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_R3_VOL , DACVOL_MAX) ;

//12 DAC L4 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_L4_VOL , DACVOL_MAX) ;

//13 DAC R4 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_R4_VOL , DACVOL_MAX) ;
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//14 ADC Control 0
sp i_wr i te_reg (AD1938_ADC_CTRL0 , adc_fs ) ;

//15 ADC Control 1
sp i_wr i te_reg (AD1938_ADC_CTRL1 , (ADC_LATCH_MID | adc_mode |

ADC_BCLK_DLY_0 | adc_wl ) ) ;

//16 ADC Control 2
sp i_wr i te_reg (AD1938_ADC_CTRL2 , ( ADC_BCLK_SRC_PIN|ADC_BCLK_SLAVE |

adc_channels | ADC_LRCLK_SLAVE | ADC_LRCLK_FMT_50_50|
ADC_LRCLK_POL_NORM|ADC_BCLK_POL_NORM) ) ;

}
e l s e
{

//0 PLL and Clock Control 0
sp i_wr i te_reg ( AD1938_PLL_CLK_CTRL0 , (DIS_ADC_DAC | INPUT512 |

PLL_IN_MCLK | MCLK_OUT_XTAL |PLL_PWR_DWN) ) ;

//1 PLL and Clock Control 1
sp i_wr i te_reg ( AD1938_PLL_CLK_CTRL1 , (DAC_CLK_MCLK |

ADC_CLK_MCLK | ENA_VREF) ) ;

//2 DAC Control 0
sp i_wr i te_reg (AD1938_DAC_CTRL0 , ( dac_mode | DAC_BCLK_DLY_1 |

dac_fs | DAC_PWR_UP) ) ;

//3 DAC Control 1
sp i_wr i te_reg (AD1938_DAC_CTRL1 , ( DAC_BCLK_SRC_INTERNAL|

DAC_BCLK_SLAVE| DAC_LRCLK_SLAVE |DAC_LRCLK_POL_NORM |
dac_channels | DAC_LATCH_MID) ) ;

//4 DAC Control 2
sp i_wr i te_reg (AD1938_DAC_CTRL2 , dac_wl ) ;

//5 DAC indiv idua l channel mutes
sp i_wr i te_reg (AD1938_DAC_CHNL_MUTE, 0x00 ) ; /∗unmute∗/

//6 DAC L1 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_L1_VOL , DACVOL_MAX) ;

//7 DAC R1 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_R1_VOL , DACVOL_MAX) ;

//8 DAC L2 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_L2_VOL , DACVOL_MAX) ;

//9 DAC R2 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_R2_VOL , DACVOL_MAX) ;

//10 DAC L3 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_L3_VOL , DACVOL_MAX) ;
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//11 DAC R3 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_R3_VOL , DACVOL_MAX) ;

//12 DAC L4 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_L4_VOL , DACVOL_MAX) ;

//13 DAC R4 volume c o n t r o l
sp i_wr i te_reg (AD1938_DAC_R4_VOL , DACVOL_MAX) ;

//14 ADC Control 0
sp i_wr i te_reg (AD1938_ADC_CTRL0 , adc_fs ) ;

//15 ADC Control 1
sp i_wr i te_reg (AD1938_ADC_CTRL1 , (ADC_LATCH_MID | adc_mode |

ADC_BCLK_DLY_1 | adc_wl ) ) ;

//16 ADC Control 2
sp i_wr i te_reg (AD1938_ADC_CTRL2 , ( ADC_BCLK_SRC_INTERNAL|

ADC_BCLK_MASTER | adc_channels | ADC_LRCLK_MASTER |
ADC_LRCLK_FMT_50_50|ADC_LRCLK_POL_NORM|ADC_BCLK_POL_NORM)
) ;

}
re turn true ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ i sP l lLocked ( void )

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool AudioControlAD1938 : : i sP l lLocked ( void )
{

re turn ( ( spi_read_reg ( AD1938_PLL_CLK_CTRL1 ) >>3)&0x1 ) ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ enable ( void )

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool AudioControlAD1938 : : enable ( void )
{

i f ( i2sMode == AD1938_I2S_SLAVE )
{

sp i_wr i te_reg ( AD1938_PLL_CLK_CTRL0 , (ENA_ADC_DAC | INPUT512 |
PLL_IN_DLRCLK | MCLK_OUT_OFF | PLL_PWR_UP) ) ;

}
e l s e
{

sp i_wr i te_reg ( AD1938_PLL_CLK_CTRL0 , (ENA_ADC_DAC | INPUT512 |
PLL_IN_MCLK | MCLK_OUT_XTAL |PLL_PWR_UP) ) ;
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}

sp i_wr i te_reg (AD1938_DAC_CHNL_MUTE, 0 ) ; /∗un mute∗/

return true ;
}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ d i s a b l e ( void )

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool AudioControlAD1938 : : d i s a b l e ( void )
{

unsigned char reg_value ;
reg_value = spi_read_reg ( AD1938_PLL_CLK_CTRL0 ) ;
reg_value = ( reg_value&0x7e ) ; /∗mask the l a s t and f i r s t b i t s ∗/
spi_wr i te_reg ( AD1938_PLL_CLK_CTRL0 , (DIS_ADC_DAC | reg_value|

PLL_PWR_DWN) ) ;

reg_value = spi_read_reg (AD1938_DAC_CTRL0) ;

sp i_wr i te_reg (AD1938_DAC_CTRL0 , ( ( reg_value&0xfe ) |DAC_PWR_DWN) ) ;

reg_value = spi_read_reg (AD1938_ADC_CTRL0) ;

sp i_wr i te_reg (AD1938_DAC_CTRL0 , ( ( reg_value&0xfe ) |ADC_PWR_DWN) ) ;

re turn true ;
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ dacVolume ( i n t dac_num , f l o a t volume )

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool AudioControlAD1938 : : dacVolume ( i n t dac_num , i n t volume )
{

switch ( dac_num )
{
case 0 : //DAC0

spi_wr i te_reg (AD1938_DAC_L1_VOL , volume ) ;
sp i_wr i te_reg (AD1938_DAC_R1_VOL , volume ) ;
break ;

case 1 : //DAC1
spi_wr i te_reg (AD1938_DAC_L2_VOL , volume ) ;
sp i_wr i te_reg (AD1938_DAC_R2_VOL , volume ) ;
break ;

case 2 : //DAC2
spi_wr i te_reg (AD1938_DAC_L3_VOL , volume ) ;
sp i_wr i te_reg (AD1938_DAC_R3_VOL , volume ) ;
break ;

case 3 : //DAC3
spi_wr i te_reg (AD1938_DAC_L4_VOL , volume ) ;
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sp i_wr i te_reg (AD1938_DAC_R4_VOL , volume ) ;
break ;

}
re turn true ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ volume ( f l o a t volume ) ∗/ /∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool AudioControlAD1938 : : volume ( f l o a t volume )
{

i n t vol = 0 ;

vol =( i n t ) ( (1 .0 −volume ) ∗255) ;
i f ( vol <0)

vol =0;
i f ( vol >255)

vol =255;

dacVolume ( 0 , vol ) ;
dacVolume ( 1 , vol ) ;
dacVolume ( 2 , vol ) ;
dacVolume ( 3 , vol ) ;

re turn true ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ dacMute

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool AudioControlAD1938 : : dacMute ( bool mute )
{

i f ( mute == true )
{

sp i_wr i te_reg (AD1938_DAC_CHNL_MUTE, 0 x f f ) ; /∗mute∗/
}
e l s e
{

sp i_wr i te_reg (AD1938_DAC_CHNL_MUTE, 00) ; /∗unmute∗/
}
return true ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ adcMute

∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool AudioControlAD1938 : : adcMute ( bool mute )
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{
unsigned char reg_value ;
reg_value = spi_read_reg (AD1938_ADC_CTRL0) ;
i f ( mute == true )
{

sp i_wr i te_reg (AD1938_ADC_CTRL0 , ( reg_value&0xc3 ) |0x3c ) ; /∗mute
∗/

}
e l s e
{

sp i_wr i te_reg (AD1938_ADC_CTRL0 , ( reg_value&0xc3 ) ) ; /∗unmute∗/
}
return true ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ readAllreg ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void AudioControlAD1938 : : readAllreg ( void )
{

i n t i =0 ;
unsigned char reg_val =0;

S e r i a l . p r i n t ( "\n readAllreg\n" ) ;
f o r ( i = 0 ; i <17; i ++)
{

reg_val = spi_read_reg ( i ) ;
S e r i a l . p r i n t ( "\n" ) ;
S e r i a l . p r i n t ( i ) ;
S e r i a l . p r i n t ( "\ t " ) ;
S e r i a l . p r i n t ( reg_val , HEX) ;

}

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ end of f i l e ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

input_tdm.h

/∗ Audio Library f o r Teensy 3 .X
∗ Copyright ( c ) 2017 , Paul S tof f regen , paul@pjrc . com
∗
∗ Development of t h i s audio l i b r a r y was funded by PJRC .COM, LLC by s a l e s of
∗ Teensy and Audio Adaptor boards . P lease support PJRC ’ s e f f o r t s to develop
∗ open source software by purchasing Teensy or other PJRC products .
∗
∗ Permission i s hereby granted , f r e e of charge , to any person obta in ing a

copy
∗ of t h i s software and a s s o c i a t e d documentation f i l e s ( the " Software " ) , to

deal
∗ in the Software without r e s t r i c t i o n , inc luding without l i m i t a t i o n the

r i g h t s
∗ to use , copy , modify , merge , publish , d i s t r i b u t e , subl i cense , and/or s e l l
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∗ copies of the Software , and to permit persons to whom the Software i s
∗ furnished to do so , s u b j e c t to the fol lowing condi t ions :
∗
∗ The above copyright not ice , development funding not ice , and t h i s

permission
∗ n o t i c e s h a l l be included in a l l copies or s u b s t a n t i a l por t ions of the

Software .
∗
∗ THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
∗ IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
∗ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE
∗ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
∗ LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,
∗ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
∗ THE SOFTWARE.
∗/

# i f n d e f _input_tdm_h_
# def ine _input_tdm_h_

# include " Arduino . h"
# inc lude " AudioStream . h"
# include "DMAChannel . h"
//# def ine MAX_CHANNELS 16
# def ine MAX_CHANNELS 32

c l a s s AudioInputTDM : publ ic AudioStream
{
publ ic :

AudioInputTDM ( void ) : AudioStream ( 0 , NULL) { begin ( ) ; }
v i r t u a l void update ( void ) ;
void begin ( void ) ;

protec ted :
AudioInputTDM ( i n t dummy) : AudioStream ( 0 , NULL) { } // to be used only

i n s i d e AudioInputI2Sslave ! !
s t a t i c bool u p d a t e _ r e s p o n s i b i l i t y ;
s t a t i c DMAChannel dma ;
s t a t i c void i s r ( void ) ;

p r i v a t e :
s t a t i c audio_block_t ∗block_incoming [MAX_CHANNELS] ;

} ;
c l a s s AudioInputTDMslave : publ ic AudioInputTDM
{
publ ic :

AudioInputTDMslave ( void ) : AudioInputTDM ( 0 ) { begin ( ) ; }
void begin ( void ) ;
f r i e n d void dma_ch1_isr ( void ) ;

} ;
# endi f
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input_tdm.cpp

/∗ Audio Library f o r Teensy 3 .X
∗ Copyright ( c ) 2017 , Paul S tof f regen , paul@pjrc . com
∗
∗ Development of t h i s audio l i b r a r y was funded by PJRC .COM, LLC by s a l e s of
∗ Teensy and Audio Adaptor boards . P lease support PJRC ’ s e f f o r t s to develop
∗ open source software by purchasing Teensy or other PJRC products .
∗
∗ Permission i s hereby granted , f r e e of charge , to any person obta in ing a

copy
∗ of t h i s software and a s s o c i a t e d documentation f i l e s ( the " Software " ) , to

deal
∗ in the Software without r e s t r i c t i o n , inc luding without l i m i t a t i o n the

r i g h t s
∗ to use , copy , modify , merge , publish , d i s t r i b u t e , subl i cense , and/or s e l l
∗ copies of the Software , and to permit persons to whom the Software i s
∗ furnished to do so , s u b j e c t to the fol lowing condi t ions :
∗
∗ The above copyright not ice , development funding not ice , and t h i s

permission
∗ n o t i c e s h a l l be included in a l l copies or s u b s t a n t i a l por t ions of the

Software .
∗
∗ THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
∗ IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
∗ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE
∗ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
∗ LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,
∗ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
∗ THE SOFTWARE.
∗/

# include " input_tdm . h"
# include " output_tdm . h"
# i f defined ( KINETISK )

DMAMEM s t a t i c u i n t 3 2 _ t tdm_rx_buffer [AUDIO_BLOCK_SAMPLES∗MAX_CHANNELS] ;
audio_block_t ∗ AudioInputTDM : : block_incoming [MAX_CHANNELS] = {

NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL

} ;
bool AudioInputTDM : : u p d a t e _ r e s p o n s i b i l i t y = f a l s e ;
DMAChannel AudioInputTDM : : dma( f a l s e ) ;

void AudioInputTDM : : begin ( void )
{

S e r i a l . p r i n t ( "\n AudioInputTDM : begin " ) ;
dma . begin ( t rue ) ; // A l l o c a t e the DMA channel f i r s t



Appendix A. Appendix 111

// TODO: should we s e t & c l e a r the I2S_RCSR_SR b i t here ?
AudioOutputTDM : : config_tdm ( ) ;

CORE_PIN13_CONFIG = PORT_PCR_MUX( 4 ) ; // pin 13 , PTC5 , I2S0_RXD0
dma .TCD−>SADDR = &I2S0_RDR0 ;
dma .TCD−>SOFF = 0 ;
dma .TCD−>ATTR = DMA_TCD_ATTR_SSIZE( 2 ) | DMA_TCD_ATTR_DSIZE( 2 ) ;
dma .TCD−>NBYTES_MLNO = 4 ;
dma .TCD−>SLAST = 0 ;
dma .TCD−>DADDR = tdm_rx_buffer ;
dma .TCD−>DOFF = 4 ;
dma .TCD−>CITER_ELINKNO = s i z e o f ( tdm_rx_buffer ) / 4 ;
dma .TCD−>DLASTSGA = −s i z e o f ( tdm_rx_buffer ) ;
dma .TCD−>BITER_ELINKNO = s i z e o f ( tdm_rx_buffer ) / 4 ;
dma .TCD−>CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma . triggerAtHardwareEvent (DMAMUX_SOURCE_I2S0_RX) ;
u p d a t e _ r e s p o n s i b i l i t y = update_setup ( ) ;
dma . enable ( ) ;

I2S0_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE | I2S_RCSR_FRDE | I2S_RCSR_FR
;

I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE ; // TX clock enable , because
sync ’d to TX

dma . a t t a c h I n t e r r u p t ( i s r ) ;
}

// TODO: needs opt imizat ion . . .
s t a t i c void memcpy_tdm_rx ( u i n t 3 2 _ t ∗dest1 , u i n t 3 2 _ t ∗dest2 , const u i n t 3 2 _ t ∗

s r c )
{

u i n t 3 2 _ t i , in1 , in2 ;

f o r ( i =0 ; i < AUDIO_BLOCK_SAMPLES/2; i ++) {
in1 = ∗ s r c ;
in2 = ∗ ( s r c +(MAX_CHANNELS>>1) ) ;
s r c += MAX_CHANNELS;
∗dest1++ = ( in1 >> 16) | ( in2 & 0xFFFF0000 ) ;
∗dest2++ = ( in1 << 16) | ( in2 & 0x0000FFFF ) ;

}
// S e r i a l . p r i n t (∗ src ,HEX) ;

}

void AudioInputTDM : : i s r ( void )
{

u i n t 3 2 _ t daddr ;
const u i n t 3 2 _ t ∗ s r c ;
unsigned i n t i ;

// S e r i a l . p r i n t ( "\ n AudioInputTDMslave : i s r " ) ;
// d i g i t a l W r i t e F a s t ( 3 5 , HIGH) ;
daddr = ( u i n t 3 2 _ t ) (dma .TCD−>DADDR) ;
dma . c l e a r I n t e r r u p t ( ) ;
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i f ( daddr < ( u i n t 3 2 _ t ) tdm_rx_buffer + s i z e o f ( tdm_rx_buffer ) / 2) {
// DMA i s r e c e i v i n g to the f i r s t h a l f of the b u f f e r
// need to remove data from the second h a l f
s r c = &tdm_rx_buffer [AUDIO_BLOCK_SAMPLES∗ (MAX_CHANNELS>>1) ] ;

} e l s e {
// DMA i s r e c e i v i n g to the second h a l f of the b u f f e r
// need to remove data from the f i r s t h a l f
s r c = &tdm_rx_buffer [ 0 ] ;

}
i f ( block_incoming [ 0 ] != NULL) {

f o r ( i =0 ; i < MAX_CHANNELS; i += 2) {
u i n t 3 2 _ t ∗dest1 = ( u i n t 3 2 _ t ∗ ) ( block_incoming [ i ]−>

data ) ;
u i n t 3 2 _ t ∗dest2 = ( u i n t 3 2 _ t ∗ ) ( block_incoming [ i +1]−>

data ) ;
memcpy_tdm_rx ( dest1 , dest2 , s r c ) ;
s r c ++;

}
}
i f ( u p d a t e _ r e s p o n s i b i l i t y ) update_a l l ( ) ;
// d i g i t a l W r i t e F a s t ( 3 5 , LOW) ;

}

void AudioInputTDM : : update ( void )
{

unsigned i n t i , j ;
audio_block_t ∗new_block [MAX_CHANNELS] ;
audio_block_t ∗out_block [MAX_CHANNELS] ;

// a l l o c a t e 16 new blocks . I f any f a i l s , a l l o c a t e none
f o r ( i =0 ; i < MAX_CHANNELS; i ++) {

new_block [ i ] = a l l o c a t e ( ) ;
i f ( new_block [ i ] == NULL) {

f o r ( j =0 ; j < i ; j ++) {
r e l e a s e ( new_block [ j ] ) ;

}
memset ( new_block , 0 , s i z e o f ( new_block ) ) ;
break ;

}
}
_ _ d i s a b l e _ i r q ( ) ;
memcpy( out_block , block_incoming , s i z e o f ( out_block ) ) ;
memcpy( block_incoming , new_block , s i z e o f ( block_incoming ) ) ;
__enable_ i rq ( ) ;
i f ( out_block [ 0 ] != NULL) {

// i f we got 1 block , a l l 16 are f i l l e d
f o r ( i =0 ; i < MAX_CHANNELS; i ++) {

t ransmit ( out_block [ i ] , i ) ;
r e l e a s e ( out_block [ i ] ) ;

}
}
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}

void AudioInputTDMslave : : begin ( void )
{

// S e r i a l . p r i n t ( "\ n AudioInputTDMslave : begin " ) ;
dma . begin ( t rue ) ; // A l l o c a t e the DMA channel f i r s t

// TODO: should we s e t & c l e a r the I2S_RCSR_SR b i t here ?
AudioOutputTDMslave : : config_tdm ( ) ;

CORE_PIN13_CONFIG = PORT_PCR_MUX( 4 ) ; // pin 13 , PTC5 , I2S0_RXD0
dma .TCD−>SADDR = &I2S0_RDR0 ;
dma .TCD−>SOFF = 0 ;
dma .TCD−>ATTR = DMA_TCD_ATTR_SSIZE( 2 ) | DMA_TCD_ATTR_DSIZE( 2 ) ;
dma .TCD−>NBYTES_MLNO = 4 ;
dma .TCD−>SLAST = 0 ;
dma .TCD−>DADDR = tdm_rx_buffer ;
dma .TCD−>DOFF = 4 ;
dma .TCD−>CITER_ELINKNO = s i z e o f ( tdm_rx_buffer ) / 4 ;
dma .TCD−>DLASTSGA = −s i z e o f ( tdm_rx_buffer ) ;
dma .TCD−>BITER_ELINKNO = s i z e o f ( tdm_rx_buffer ) / 4 ;
dma .TCD−>CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma . triggerAtHardwareEvent (DMAMUX_SOURCE_I2S0_RX) ;
u p d a t e _ r e s p o n s i b i l i t y = update_setup ( ) ;
dma . enable ( ) ;

I2S0_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE | I2S_RCSR_FRDE | I2S_RCSR_FR
;

I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE ; // TX clock enable , because
sync ’d to TX

dma . a t t a c h I n t e r r u p t ( i s r ) ;
}
# endi f // KINETISK

output_tdm.h

/∗ Audio Library f o r Teensy 3 .X
∗ Copyright ( c ) 2017 , Paul S tof f regen , paul@pjrc . com
∗
∗ Development of t h i s audio l i b r a r y was funded by PJRC .COM, LLC by s a l e s of
∗ Teensy and Audio Adaptor boards . P lease support PJRC ’ s e f f o r t s to develop
∗ open source software by purchasing Teensy or other PJRC products .
∗
∗ Permission i s hereby granted , f r e e of charge , to any person obta in ing a

copy
∗ of t h i s software and a s s o c i a t e d documentation f i l e s ( the " Software " ) , to

deal
∗ in the Software without r e s t r i c t i o n , inc luding without l i m i t a t i o n the

r i g h t s
∗ to use , copy , modify , merge , publish , d i s t r i b u t e , subl i cense , and/or s e l l
∗ copies of the Software , and to permit persons to whom the Software i s
∗ furnished to do so , s u b j e c t to the fol lowing condi t ions :
∗
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∗ The above copyright not ice , development funding not ice , and t h i s
permission

∗ n o t i c e s h a l l be included in a l l copies or s u b s t a n t i a l por t ions of the
Software .

∗
∗ THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
∗ IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
∗ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE
∗ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
∗ LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,
∗ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
∗ THE SOFTWARE.
∗/

# i f n d e f output_tdm_h_
# def ine output_tdm_h_

# include " Arduino . h"
# inc lude " AudioStream . h"
# include "DMAChannel . h"

//# def ine MAX_CHANNELS 16
# def ine MAX_CHANNELS 32
# def ine MAX_CHANNELS 32
c l a s s AudioOutputTDM : publ ic AudioStream
{
publ ic :

AudioOutputTDM ( void ) : AudioStream (MAX_CHANNELS, inputQueueArray ) {
begin ( ) ; }

v i r t u a l void update ( void ) ;
void begin ( void ) ;
f r i e n d c l a s s AudioInputTDM ;

protec ted :
AudioOutputTDM ( i n t dummy) : AudioStream (MAX_CHANNELS, inputQueueArray ) {

}
s t a t i c void config_tdm ( void ) ;
s t a t i c audio_block_t ∗block_input [MAX_CHANNELS] ;
s t a t i c bool u p d a t e _ r e s p o n s i b i l i t y ;
s t a t i c DMAChannel dma ;
s t a t i c void i s r ( void ) ;

p r i v a t e :
audio_block_t ∗ inputQueueArray [MAX_CHANNELS] ;

} ;

c l a s s AudioOutputTDMslave : publ ic AudioOutputTDM
{
publ ic :

AudioOutputTDMslave ( void ) : AudioOutputTDM ( 0 ) { begin ( ) ; } ;
void begin ( void ) ;
f r i e n d c l a s s AudioInputTDMslave ;
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f r i e n d void dma_ch0_isr ( void ) ;
protec ted :

s t a t i c void config_tdm ( void ) ;
} ;
# endi f

output_tdm.cpp

/∗ Audio Library f o r Teensy 3 .X
∗ Copyright ( c ) 2017 , Paul S tof f regen , paul@pjrc . com
∗
∗ Development of t h i s audio l i b r a r y was funded by PJRC .COM, LLC by s a l e s of
∗ Teensy and Audio Adaptor boards . P lease support PJRC ’ s e f f o r t s to develop
∗ open source software by purchasing Teensy or other PJRC products .
∗
∗ Permission i s hereby granted , f r e e of charge , to any person obta in ing a

copy
∗ of t h i s software and a s s o c i a t e d documentation f i l e s ( the " Software " ) , to

deal
∗ in the Software without r e s t r i c t i o n , inc luding without l i m i t a t i o n the

r i g h t s
∗ to use , copy , modify , merge , publish , d i s t r i b u t e , subl i cense , and/or s e l l
∗ copies of the Software , and to permit persons to whom the Software i s
∗ furnished to do so , s u b j e c t to the fol lowing condi t ions :
∗
∗ The above copyright not ice , development funding not ice , and t h i s

permission
∗ n o t i c e s h a l l be included in a l l copies or s u b s t a n t i a l por t ions of the

Software .
∗
∗ THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
∗ IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
∗ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE
∗ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
∗ LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,
∗ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
∗ THE SOFTWARE.
∗/

# include " output_tdm . h"
# include " memcpy_audio . h"

# i f defined ( KINETISK )

audio_block_t ∗ AudioOutputTDM : : block_input [MAX_CHANNELS] = {
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL

} ;
bool AudioOutputTDM : : u p d a t e _ r e s p o n s i b i l i t y = f a l s e ;
s t a t i c u i n t 3 2 _ t zeros [AUDIO_BLOCK_SAMPLES/ 2 ] ;

DMAMEM s t a t i c u i n t 3 2 _ t tdm_tx_buffer [AUDIO_BLOCK_SAMPLES∗MAX_CHANNELS] ;
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DMAChannel AudioOutputTDM : : dma( f a l s e ) ;

void AudioOutputTDM : : begin ( void )
{

S e r i a l . p r i n t ( "\n AudioOutputTDM : begin " ) ;
dma . begin ( t rue ) ; // A l l o c a t e the DMA channel f i r s t

f o r ( i n t i =0 ; i < MAX_CHANNELS; i ++) {
block_input [ i ] = NULL;

}

// TODO: should we s e t & c l e a r the I2S_TCSR_SR b i t here ?
config_tdm ( ) ;
CORE_PIN22_CONFIG = PORT_PCR_MUX( 6 ) ; // pin 22 , PTC1 , I2S0_TXD0

dma .TCD−>SADDR = tdm_tx_buffer ;
dma .TCD−>SOFF = 4 ;
dma .TCD−>ATTR = DMA_TCD_ATTR_SSIZE( 2 ) | DMA_TCD_ATTR_DSIZE( 2 ) ;
dma .TCD−>NBYTES_MLNO = 4 ;
dma .TCD−>SLAST = −s i z e o f ( tdm_tx_buffer ) ;
dma .TCD−>DADDR = &I2S0_TDR0 ;
dma .TCD−>DOFF = 0 ;
dma .TCD−>CITER_ELINKNO = s i z e o f ( tdm_tx_buffer ) / 4 ;
dma .TCD−>DLASTSGA = 0 ;
dma .TCD−>BITER_ELINKNO = s i z e o f ( tdm_tx_buffer ) / 4 ;
dma .TCD−>CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma . triggerAtHardwareEvent (DMAMUX_SOURCE_I2S0_TX) ;
u p d a t e _ r e s p o n s i b i l i t y = update_setup ( ) ;
dma . enable ( ) ;

I2S0_TCSR = I2S_TCSR_SR ;
I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE ;
dma . a t t a c h I n t e r r u p t ( i s r ) ;

}

// TODO: needs opt imizat ion . . .
s t a t i c void memcpy_tdm_tx ( u i n t 3 2 _ t ∗dest , const u i n t 3 2 _ t ∗ src1 , const

u i n t 3 2 _ t ∗ s r c 2 )
{

u i n t 3 2 _ t i , in1 , in2 , out1 , out2 ;

// S e r i a l . p r i n t (∗ src2 ,HEX) ;
f o r ( i =0 ; i < AUDIO_BLOCK_SAMPLES/2; i ++) {

in1 = ∗ s r c 1 ++;
in2 = ∗ s r c 2 ++;

// S e r i a l . p r i n t ( "\ n " ) ;
// S e r i a l . p r i n t ( in1 ,HEX) ;

out1 = ( in1 << 16) | ( in2 & 0xFFFF ) ;
out2 = ( in1 & 0xFFFF0000 ) | ( in2 >> 16) ;
//out1 = ( ( in1 & 0xFFFF ) <<16) ;
//out2 = ( ( in1 & 0xFFFF0000 ) ) ;
∗dest = out1 ;
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// S e r i a l . p r i n t ( "\ n " ) ;
// S e r i a l . p r i n t ( out1 ,HEX) ;
∗ ( dest + (MAX_CHANNELS>>1) ) = out2 ;
dest += MAX_CHANNELS;

}

// S e r i a l . p r i n t (∗ src ,HEX) ;
}

void AudioOutputTDM : : i s r ( void )
{

u i n t 3 2 _ t ∗dest ;
const u i n t 3 2 _ t ∗ src1 , ∗ s r c 2 ;
u i n t 3 2 _ t i , saddr ;

// S e r i a l . p r i n t ( "\ n AudioOutputTDM : i s r " ) ;
/// d i g i t a l W r i t e F a s t ( 3 5 , HIGH) ;
saddr = ( u i n t 3 2 _ t ) (dma .TCD−>SADDR) ;
dma . c l e a r I n t e r r u p t ( ) ;
i f ( saddr < ( u i n t 3 2 _ t ) tdm_tx_buffer + s i z e o f ( tdm_tx_buffer ) / 2) {

// DMA i s t r a n s m i t t i n g the f i r s t h a l f of the b u f f e r
// so we must f i l l the second h a l f
dest = tdm_tx_buffer + AUDIO_BLOCK_SAMPLES∗ (MAX_CHANNELS>>1) ;

} e l s e {
// DMA i s t r a n s m i t t i n g the second h a l f of the b u f f e r
// so we must f i l l the f i r s t h a l f
dest = tdm_tx_buffer ;

}
i f ( u p d a t e _ r e s p o n s i b i l i t y ) AudioStream : : update_a l l ( ) ;
f o r ( i =0 ; i < MAX_CHANNELS; i += 2) {

s r c 1 = block_input [ i ] ? ( u i n t 3 2 _ t ∗ ) ( block_input [ i ]−>data ) :
zeros ;

s r c 2 = block_input [ i +1] ? ( u i n t 3 2 _ t ∗ ) ( block_input [ i +1]−>data
) : zeros ;

memcpy_tdm_tx ( dest , src1 , s r c 2 ) ;
dest ++;

}
f o r ( i =0 ; i < MAX_CHANNELS; i ++) {

i f ( block_input [ i ] ) {
r e l e a s e ( block_input [ i ] ) ;
b lock_input [ i ] = NULL;

}
}
// d i g i t a l W r i t e F a s t ( 3 5 , LOW) ;

}

void AudioOutputTDM : : update ( void )
{

audio_block_t ∗prev [MAX_CHANNELS] ;
unsigned i n t i ;

_ _ d i s a b l e _ i r q ( ) ;
f o r ( i =0 ; i < MAX_CHANNELS; i ++) {
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prev [ i ] = block_input [ i ] ;
b lock_input [ i ] = receiveReadOnly ( i ) ;

}
__enable_ i rq ( ) ;
f o r ( i =0 ; i < MAX_CHANNELS; i ++) {

i f ( prev [ i ] ) r e l e a s e ( prev [ i ] ) ;
}

}

// MCLK needs to be 48 e6 / 1088 ∗ 512 = 22 .588235 MHz −> 44.117647 kHz sample
r a t e

//
# i f F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000

// PLL i s a t 96 MHz in these modes
# def ine MCLK_MULT 4
# def ine MCLK_DIV 17

# e l i f F_CPU == 72000000
# def ine MCLK_MULT 16
# def ine MCLK_DIV 51

# e l i f F_CPU == 120000000
# def ine MCLK_MULT 16
# def ine MCLK_DIV 85

# e l i f F_CPU == 144000000
# def ine MCLK_MULT 8
# def ine MCLK_DIV 51

# e l i f F_CPU == 168000000
# def ine MCLK_MULT 16
# def ine MCLK_DIV 119

# e l i f F_CPU == 180000000
# def ine MCLK_MULT 32
# def ine MCLK_DIV 255
# def ine MCLK_SRC 0

# e l i f F_CPU == 192000000
//# def ine MCLK_MULT 2
//# def ine MCLK_DIV 17
//++++
# def ine MCLK_MULT 16
# def ine MCLK_DIV 125
//−−−−

# e l i f F_CPU == 216000000
# def ine MCLK_MULT 16
# def ine MCLK_DIV 153
# def ine MCLK_SRC 0

# e l i f F_CPU == 240000000
# def ine MCLK_MULT 8
# def ine MCLK_DIV 85

# e l s e
# e r r o r " This CPU Clock Speed i s not supported by the Audio l i b r a r y " ;

# endi f

# i f n d e f MCLK_SRC
# i f F_CPU >= 20000000
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# def ine MCLK_SRC 3 // the PLL
# e l s e

# def ine MCLK_SRC 0 // system clock
# endi f
# endi f

void AudioOutputTDM : : config_tdm ( void )
{

SIM_SCGC6 |= SIM_SCGC6_I2S ;
SIM_SCGC7 |= SIM_SCGC7_DMA;
SIM_SCGC6 |= SIM_SCGC6_DMAMUX;

// i f e i t h e r t r a n s m i t t e r or r e c e i v e r i s enabled , do nothing
i f ( I2S0_TCSR & I2S_TCSR_TE ) re turn ;
i f ( I2S0_RCSR & I2S_RCSR_RE ) re turn ;

// enable MCLK output
I2S0_MCR = I2S_MCR_MICS (MCLK_SRC) | I2S_MCR_MOE ;
while ( I2S0_MCR & I2S_MCR_DUF) ;
I2S0_MDR = I2S_MDR_FRACT ( (MCLK_MULT−1) ) | I2S_MDR_DIVIDE ( ( MCLK_DIV−1)

) ;

// conf igure t r a n s m i t t e r
I2S0_TMR = 0 ;
I2S0_TCR1 = I2S_TCR1_TFW ( 4 ) ;
I2S0_TCR2 = I2S_TCR2_SYNC ( 0 ) | I2S_TCR2_BCP | I2S_TCR2_MSEL ( 1 )

| I2S_TCR2_BCD | I2S_TCR2_DIV ( 0 ) ;
I2S0_TCR3 = I2S_TCR3_TCE ;
I2S0_TCR4 = I2S_TCR4_FRSZ ( 7 ) | I2S_TCR4_SYWD ( 0 ) | I2S_TCR4_MF

| I2S_TCR4_FSE | I2S_TCR4_FSD ;
I2S0_TCR5 = I2S_TCR5_WNW( 3 1 ) | I2S_TCR5_W0W ( 3 1 ) | I2S_TCR5_FBT ( 3 1 ) ;

// conf igure r e c e i v e r ( sync ’d to t r a n s m i t t e r c l o c k s )
I2S0_RMR = 0 ;
I2S0_RCR1 = I2S_RCR1_RFW ( 4 ) ;
I2S0_RCR2 = I2S_RCR2_SYNC ( 1 ) | I2S_TCR2_BCP | I2S_RCR2_MSEL ( 1 )

| I2S_RCR2_BCD | I2S_RCR2_DIV ( 0 ) ;
I2S0_RCR3 = I2S_RCR3_RCE ;
I2S0_RCR4 = I2S_RCR4_FRSZ ( 7 ) | I2S_RCR4_SYWD ( 0 ) | I2S_RCR4_MF

| I2S_RCR4_FSE | I2S_RCR4_FSD ;
I2S0_RCR5 = I2S_RCR5_WNW( 3 1 ) | I2S_RCR5_W0W ( 3 1 ) | I2S_RCR5_FBT ( 3 1 ) ;

// conf igure pin mux f o r 3 c lock s i g n a l s
CORE_PIN23_CONFIG = PORT_PCR_MUX( 6 ) ; // pin 23 , PTC2 , I2S0_TX_FS (

LRCLK)
CORE_PIN9_CONFIG = PORT_PCR_MUX( 6 ) ; // pin 9 , PTC3 , I2S0_TX_BCLK
CORE_PIN11_CONFIG = PORT_PCR_MUX( 6 ) ; // pin 11 , PTC6 , I2S0_MCLK

}
void AudioOutputTDMslave : : config_tdm ( void )
{

S e r i a l . p r i n t ( "\n AudioOutputTDMslave : config_tdm " ) ;
SIM_SCGC6 |= SIM_SCGC6_I2S ;
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SIM_SCGC7 |= SIM_SCGC7_DMA;
SIM_SCGC6 |= SIM_SCGC6_DMAMUX;

// i f e i t h e r t r a n s m i t t e r or r e c e i v e r i s enabled , do nothing
i f ( I2S0_TCSR & I2S_TCSR_TE ) re turn ;
i f ( I2S0_RCSR & I2S_RCSR_RE ) re turn ;

// S e l e c t input c lock 0
// Configure to input the b i t−c lock from pin , bypasses the MCLK

divider
I2S0_MCR = I2S_MCR_MICS ( 0 ) ;
I2S0_MDR = 0 ;

// conf igure t r a n s m i t t e r
I2S0_TMR = 0 ;
I2S0_TCR1 = I2S_TCR1_TFW ( 8 ) ;
I2S0_TCR2 = I2S_TCR2_SYNC ( 0 ) | I2S_TCR2_BCP ;
I2S0_TCR3 = I2S_TCR3_TCE ;
I2S0_TCR4 = I2S_TCR4_FRSZ ( 1 5 ) | I2S_TCR4_SYWD ( 0 ) | I2S_TCR4_MF

| I2S_TCR4_FSE | I2S_TCR4_FSP ; //|I2S_TCR4_FSD;//FSD
I2S0_TCR5 = I2S_TCR5_WNW( 3 1 ) | I2S_TCR5_W0W ( 3 1 ) | I2S_TCR5_FBT ( 3 1 ) ;

// conf igure r e c e i v e r ( sync ’d to t r a n s m i t t e r c l o c k s )
I2S0_RMR = 0 ;
I2S0_RCR1 = I2S_RCR1_RFW ( 8 ) ;
I2S0_RCR2 = I2S_RCR2_SYNC ( 1 ) | I2S_TCR2_BCP ;
I2S0_RCR3 = I2S_RCR3_RCE ;
I2S0_RCR4 = I2S_RCR4_FRSZ ( 1 5 ) | I2S_RCR4_SYWD ( 0 ) | I2S_RCR4_MF

| I2S_RCR4_FSE | I2S_RCR4_FSP| I2S_RCR4_FSD ;
I2S0_RCR5 = I2S_RCR5_WNW( 3 1 ) | I2S_RCR5_W0W ( 3 1 ) | I2S_RCR5_FBT ( 3 1 ) ;

// conf igure pin mux f o r 3 c lock s i g n a l s
CORE_PIN23_CONFIG = PORT_PCR_MUX( 6 ) ; // pin 23 , PTC2 , I2S0_TX_FS (

LRCLK)
CORE_PIN9_CONFIG = PORT_PCR_MUX( 6 ) ; // pin 9 , PTC3 , I2S0_TX_BCLK
CORE_PIN11_CONFIG = PORT_PCR_MUX( 6 ) ; // pin 11 , PTC6 , I2S0_MCLK

}

void AudioOutputTDMslave : : begin ( void )
{

S e r i a l . p r i n t ( "\n AudioOutputTDMslave : begin " ) ;
dma . begin ( t rue ) ; // A l l o c a t e the DMA channel f i r s t

f o r ( i n t i =0 ; i < MAX_CHANNELS; i ++) {
block_input [ i ] = NULL;

}

// TODO: should we s e t & c l e a r the I2S_TCSR_SR b i t here ?
AudioOutputTDMslave : : config_tdm ( ) ;
CORE_PIN22_CONFIG = PORT_PCR_MUX( 6 ) ; // pin 22 , PTC1 , I2S0_TXD0

dma .TCD−>SADDR = tdm_tx_buffer ;
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dma .TCD−>SOFF = 4 ;
dma .TCD−>ATTR = DMA_TCD_ATTR_SSIZE( 2 ) | DMA_TCD_ATTR_DSIZE( 2 ) ;
dma .TCD−>NBYTES_MLNO = 4 ;
dma .TCD−>SLAST = −s i z e o f ( tdm_tx_buffer ) ;
dma .TCD−>DADDR = &I2S0_TDR0 ;
dma .TCD−>DOFF = 0 ;
dma .TCD−>CITER_ELINKNO = s i z e o f ( tdm_tx_buffer ) / 4 ;
dma .TCD−>DLASTSGA = 0 ;
dma .TCD−>BITER_ELINKNO = s i z e o f ( tdm_tx_buffer ) / 4 ;
dma .TCD−>CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma . triggerAtHardwareEvent (DMAMUX_SOURCE_I2S0_TX) ;
u p d a t e _ r e s p o n s i b i l i t y = update_setup ( ) ;
dma . enable ( ) ;

I2S0_TCSR = I2S_TCSR_SR ;
I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE ;
dma . a t t a c h I n t e r r u p t ( i s r ) ;

}

# endi f // KINETISK

effect_freeverb.h

/∗ Freeverb f o r teensy
∗
∗ Copyright ( c ) 2017 , Yasmeen Sultana
∗
∗
∗ Permission i s hereby granted , f r e e of charge , to any person obta in ing a

copy
∗ of t h i s software and a s s o c i a t e d documentation f i l e s ( the " Software " ) , to

deal
∗ in the Software without r e s t r i c t i o n , inc luding without l i m i t a t i o n the

r i g h t s
∗ to use , copy , modify , merge , publish , d i s t r i b u t e , subl i cense , and/or s e l l
∗ copies of the Software , and to permit persons to whom the Software i s
∗ furnished to do so , s u b j e c t to the fol lowing condi t ions :
∗
∗ The above copyright not ice , development funding not ice , and t h i s permission
∗ n o t i c e s h a l l be included in a l l copies or s u b s t a n t i a l por t ions of the

Software .
∗
∗ THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
∗ IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
∗ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
∗ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
∗ LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,
∗ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
∗ THE SOFTWARE.
∗/
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# i f n d e f e f f e c t _ f r e e v e r b _
# def ine e f f e c t _ f r e e v e r b _

# include " AudioStream . h"

/∗All pass f i l t e r s ∗/
# def ine APF_COUNT 4

# def ine APF1_DELAY_LENGTH 225
# def ine APF2_DELAY_LENGTH 556
# def ine APF3_DELAY_LENGTH 441
# def ine APF4_DELAY_LENGTH 341

/∗low pass feedback combo f i l t e r s ∗/

# def ine LBCF_COUNT 8

# def ine LBCF1_DELAY_LENGTH 1557
# def ine LBCF2_DELAY_LENGTH 1617
# def ine LBCF3_DELAY_LENGTH 1491
# def ine LBCF4_DELAY_LENGTH 1422
# def ine LBCF5_DELAY_LENGTH 1277
# def ine LBCF6_DELAY_LENGTH 1356
# def ine LBCF7_DELAY_LENGTH 1188
# def ine LBCF8_DELAY_LENGTH 1116

# def ine RIGHT_STERO_OFFSET 23

c l a s s AudioEffectFreeverb : publ ic AudioStream
{
publ ic :

AudioEffectFreeverb ( void ) : AudioStream ( 1 , inputQueueArray )
{

/∗ c o n s t r u c t o r ∗/
i n i t _ a p f ( 0 . 5 f , 0 ) ;
i n i t _ l b c f ( 0 . 8 4 f , 0 . 2 f , 0 ) ;

}
AudioEffectFreeverb ( bool rightChannel ) : AudioStream ( 1 ,

inputQueueArray )
{

i f ( r ightChannel==true )
{

i n i t _ a p f ( 0 . 5 f , RIGHT_STERO_OFFSET) ;
i n i t _ l b c f ( 0 . 8 4 f , 0 . 2 f , RIGHT_STERO_OFFSET) ;

}
e l s e
{

i n i t _ a p f ( 0 . 5 f , 0 ) ;
i n i t _ l b c f ( 0 . 8 4 f , 0 . 2 f , 0 ) ;

}
}
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AudioEffectFreeverb ( f l o a t apf_gain , f l o a t feedback , f l o a t damp, bool
rightChannel ) : AudioStream ( 1 , inputQueueArray )

{
i f ( r ightChannel==true )
{

i n i t _ a p f ( apf_gain , RIGHT_STERO_OFFSET) ;
i n i t _ l b c f ( feedback , damp, RIGHT_STERO_OFFSET) ;

}
e l s e
{

i n i t _ a p f ( apf_gain , 0 ) ;
i n i t _ l b c f ( feedback , damp, 0 ) ;

}
}
v i r t u a l void update ( void ) ;

p r i v a t e :
s t r u c t a l l p a s s _ f i l t e r
{

i n t 3 2 _ t gain ;
i n t 3 2 _ t gain1 ;

i n t 3 2 _ t ∗pbuffer ;
u i n t 3 2 _ t buf_len ;
u i n t 3 2 _ t delay ;
u i n t 3 2 _ t buffer Index ;

} ;
s t r u c t lowpass_comb_f i l ter
{

i n t 3 2 _ t damp1 ; /∗d∗/
i n t 3 2 _ t damp2 ; /∗1−d∗/
i n t 3 2 _ t feedback ; /∗ f ∗/
i n t 3 2 _ t s t a t e _ z 1 ; /∗∗/
i n t 3 2 _ t ∗pbuffer ;
u i n t 3 2 _ t buf_len ;
u i n t 3 2 _ t delay ;
u i n t 3 2 _ t buffer Index ;

} ;

audio_block_t ∗ inputQueueArray [ 1 ] ;

s t r u c t a l l p a s s _ f i l t e r apf [APF_COUNT ] ;
s t r u c t lowpass_comb_f i l ter l b c f [LBCF_COUNT ] ;

void i n i t _ a p f ( f l o a t gain , i n t 3 2 _ t o f f s e t ) ;
s t a t i c void process_apf ( s t r u c t a l l p a s s _ f i l t e r ∗apf , i n t 3 2 _ t ∗ in_buf ,

i n t 3 2 _ t ∗out_buf ) ;
void i n i t _ l b c f ( f l o a t feedback , f l o a t damp, i n t 3 2 _ t o f f s e t ) ;

s t a t i c void p r o c e s s _ l b c f ( s t r u c t lowpass_comb_f i l ter ∗ l b c f , i n t 3 2 _ t ∗
in_buf , i n t 3 2 _ t ∗out_buf ) ;

i n t 3 2 _ t apf1_buf [APF1_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;
i n t 3 2 _ t apf2_buf [APF2_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;
i n t 3 2 _ t apf3_buf [APF3_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;
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i n t 3 2 _ t apf4_buf [APF4_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;

i n t 3 2 _ t l b c f 1 _ b u f [LBCF1_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;
i n t 3 2 _ t l b c f 2 _ b u f [LBCF2_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;
i n t 3 2 _ t l b c f 3 _ b u f [LBCF3_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;
i n t 3 2 _ t l b c f 4 _ b u f [LBCF4_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;
i n t 3 2 _ t l b c f 5 _ b u f [LBCF5_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;
i n t 3 2 _ t l b c f 6 _ b u f [LBCF6_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;
i n t 3 2 _ t l b c f 7 _ b u f [LBCF7_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;
i n t 3 2 _ t l b c f 8 _ b u f [LBCF8_DELAY_LENGTH+ RIGHT_STERO_OFFSET ] ;

i n t 3 2 _ t q31_buf [AUDIO_BLOCK_SAMPLES ] ;
i n t 3 2 _ t sum_buf [AUDIO_BLOCK_SAMPLES ] ;
i n t 3 2 _ t aux_buf [AUDIO_BLOCK_SAMPLES ] ;

} ;

# endi f

effect_freeverb.cpp

/∗
∗ Copyright ( c ) 2017 Yasmeen Sultana
∗
∗ Permission i s hereby granted , f r e e of charge , to any person obta in ing a

copy
∗ of t h i s software and a s s o c i a t e d documentation f i l e s ( the " Software " ) , to

deal
∗ in the Software without r e s t r i c t i o n , inc luding without l i m i t a t i o n the

r i g h t s
∗ to use , copy , modify , merge , publish , d i s t r i b u t e , subl i cense , and/or s e l l
∗ copies of the Software , and to permit persons to whom the Software i s
∗ furnished to do so , s u b j e c t to the fol lowing condi t ions :
∗
∗ The above copyright n o t i c e and t h i s permission n o t i c e s h a l l be included in

a l l
∗ copies or s u b s t a n t i a l por t ions of the Software .
∗
∗ THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
∗ IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
∗ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE
∗ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
∗ LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,
∗ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE
∗ SOFTWARE.
∗/

# include " e f f e c t _ f r e e v e r b . h"
# inc lude " u t i l i t y /dspinst . h "
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# include " math_helper . h"

# i f 1
void

AudioEffectFreeverb : : process_apf ( s t r u c t a l l p a s s _ f i l t e r ∗apf , i n t 3 2 _ t ∗ in_buf ,
i n t 3 2 _ t ∗out_buf )

{
i n t 3 2 _ t bufout ;
i n t 3 2 _ t input ;
i n t 3 2 _ t z1 ,w;
i n t 3 2 _ t n ;
i n t 3 2 _ t output ;

//bufout = b u f f e r [ bufidx ] ;
//b u f f e r [ bufidx ] = input + ( bufout ∗ feedback ) ;
//output = −b u f f e r [ bufidx ] ∗ feedback + bufout ;

f o r ( n = 0 ; n < AUDIO_BLOCK_SAMPLES; n++)
{

bufout = apf−>pbuffer [ apf−>buffer Index ] ;
input = in_buf [ n ] ;
z1 = mult iply_32x32_rshi f t32_rounded ( bufout , apf−>gain ) ;
input += ( z1 << 2) ;
w= mult iply_32x32_rshi f t32_rounded(− input , apf−>gain ) ;
output =bufout +(w << 2) ;
out_buf [ n ] = output ;
apf−>pbuffer [ apf−>buffer Index ] = input ;
apf−>buffer Index ++;
i f ( apf−>buffer Index >= apf−>delay )
{

apf−>buffer Index = 0 ;
}

}
}
# endi f

# i f 0
void
AudioEffectFreeverb : : process_apf ( s t r u c t a l l p a s s _ f i l t e r ∗apf , i n t 3 2 _ t ∗ in_buf ,

i n t 3 2 _ t ∗out_buf )
{

i n t 3 2 _ t bufout ;
i n t 3 2 _ t input ;
i n t 3 2 _ t z1 ,w;
i n t 3 2 _ t n ;
i n t 3 2 _ t output ;

i n t 3 2 _ t bufGain ;

//bufout = b u f f e r [ bufidx ] ;
//b u f f e r [ bufidx ] = input + ( bufout ∗ feedback ) ;
//output = −b u f f e r [ bufidx ] ∗ feedback + bufout ;
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f o r ( n = 0 ; n < AUDIO_BLOCK_SAMPLES; n++)
{

bufout = apf−>pbuffer [ apf−>buffer Index ] ;
input = in_buf [ n ] ;
z1 = mult iply_32x32_rshi f t32_rounded ( bufout , apf−>gain ) ;
//input += ( z1 << 2) ;

bufGain = ( input +( z1 << 2) ) ;
w= mult iply_32x32_rshi f t32_rounded(−bufGain , apf−>gain1 ) ;
output = bufout +(w << 2) ;
out_buf [ n ] = output ;
apf−>pbuffer [ apf−>buffer Index ] = bufGain ;
apf−>buffer Index ++;
i f ( apf−>buffer Index >= apf−>delay )
{

apf−>buffer Index = 0 ;
}

}
}
# endi f
void
AudioEffectFreeverb : : p r o c e s s _ l b c f ( s t r u c t lowpass_comb_f i l ter ∗ l b c f , i n t 3 2 _ t ∗

in_buf , i n t 3 2 _ t ∗out_buf )
{

i n t 3 2 _ t bufout ;
i n t 3 2 _ t input ;
i n t 3 2 _ t n ;
i n t 3 2 _ t sum=0;
i n t 3 2 _ t sum2 = 0 ;
/∗
output = b u f f e r [ bufidx ] ;
f i l t e r s t o r e = ( output ∗ damp2) + ( f i l t e r s t o r e ∗ damp1) ;
b u f f e r [ bufidx ] = input + ( f i l t e r s t o r e ∗ feedback ) ;
∗/
f o r ( n = 0 ; n < AUDIO_BLOCK_SAMPLES; n++)
{

bufout = l b c f −>pbuffer [ l b c f −>buffer Index ] ;
input = in_buf [ n ] ;

sum = mult iply_32x32_rshi f t32_rounded ( bufout , l b c f −>damp2) ;
sum2= mult iply_32x32_rshi f t32_rounded ( l b c f −>sta te_z1 , l b c f −>

damp1) ;
l b c f −>s t a t e _ z 1 = ( ( sum + sum2 ) << 2) ;
sum = mult iply_32x32_rshi f t32_rounded ( l b c f −>sta te_z1 , l b c f −>

feedback ) ;
sum2 = input + (sum << 2) ;
l b c f −>pbuffer [ l b c f −>buffer Index ] = sum2 ;
out_buf [ n ] = bufout ;
l b c f −>buffer Index ++;
i f ( l b c f −>buffer Index >= l b c f −>delay )
{

l b c f −>buffer Index = 0 ;
}
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}
}
void AudioEffectFreeverb : : i n i t _ a p f ( f l o a t gain , i n t 3 2 _ t o f f s e t )
{

u i n t 8 _ t n = 0 ;

f o r ( n = 0 ; n < APF_COUNT; n++)
{

apf [ n ] . gain = ( i n t 3 2 _ t ) ( gain ∗1073741824 .0 ) ; /∗ 2 . 3 0 format∗/
apf [ n ] . gain1 = ( i n t 3 2 _ t ) ( (1 + gain ) ∗1073741824 .0 ) ; /∗ 2 . 3 0 format∗/

apf [ n ] . buf fer Index = 0 ;
}

memset(& apf1_buf [ 0 ] , 0 , s i z e o f ( apf1_buf ) ) ;
memset(& apf2_buf [ 0 ] , 0 , s i z e o f ( apf2_buf ) ) ;
memset(& apf3_buf [ 0 ] , 0 , s i z e o f ( apf3_buf ) ) ;
memset(& apf4_buf [ 0 ] , 0 , s i z e o f ( apf4_buf ) ) ;

apf [ 0 ] . pbuffer = &apf1_buf [ 0 ] ;
apf [ 0 ] . delay = APF1_DELAY_LENGTH + o f f s e t ;
apf [ 0 ] . buf_len = APF1_DELAY_LENGTH + o f f s e t ;

apf [ 1 ] . pbuffer = &apf2_buf [ 0 ] ;
apf [ 1 ] . delay = APF2_DELAY_LENGTH + o f f s e t ;
apf [ 1 ] . buf_len = APF2_DELAY_LENGTH + o f f s e t ;

apf [ 2 ] . pbuffer = &apf3_buf [ 0 ] ;
apf [ 2 ] . delay = APF3_DELAY_LENGTH + o f f s e t ;
apf [ 2 ] . buf_len = APF3_DELAY_LENGTH + o f f s e t ;

apf [ 3 ] . pbuffer = &apf4_buf [ 0 ] ;
apf [ 3 ] . delay = APF4_DELAY_LENGTH + o f f s e t ;
apf [ 3 ] . buf_len = APF4_DELAY_LENGTH + o f f s e t ;

}

void AudioEffectFreeverb : : i n i t _ l b c f ( f l o a t feedback , f l o a t damp, i n t 3 2 _ t o f f s e t
)

{
u i n t 8 _ t n = 0 ;

f o r ( n = 0 ; n < LBCF_COUNT; n++)
{

l b c f [ n ] . feedback = ( i n t 3 2 _ t ) ( feedback ∗1073741824 .0 ) ;
/∗ 2 . 3 0 format∗/

l b c f [ n ] . damp1 = ( i n t 3 2 _ t ) (damp∗1073741824 .0 ) ;
/∗ 2 . 3 0 format∗/

l b c f [ n ] . damp2 = ( i n t 3 2 _ t ) ((1−damp) ∗1073741824 .0 ) ;
/∗ 2 . 3 0 format∗/

}
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memset(& l b c f 1 _ b u f [ 0 ] , 0 , s i z e o f ( l b c f 1 _ b u f ) ) ;
memset(& l b c f 2 _ b u f [ 0 ] , 0 , s i z e o f ( l b c f 2 _ b u f ) ) ;
memset(& l b c f 3 _ b u f [ 0 ] , 0 , s i z e o f ( l b c f 3 _ b u f ) ) ;
memset(& l b c f 4 _ b u f [ 0 ] , 0 , s i z e o f ( l b c f 4 _ b u f ) ) ;
memset(& l b c f 5 _ b u f [ 0 ] , 0 , s i z e o f ( l b c f 5 _ b u f ) ) ;
memset(& l b c f 6 _ b u f [ 0 ] , 0 , s i z e o f ( l b c f 6 _ b u f ) ) ;
memset(& l b c f 7 _ b u f [ 0 ] , 0 , s i z e o f ( l b c f 7 _ b u f ) ) ;
memset(& l b c f 8 _ b u f [ 0 ] , 0 , s i z e o f ( l b c f 8 _ b u f ) ) ;

l b c f [ 0 ] . pbuffer = &l b c f 1 _ b u f [ 0 ] ;
l b c f [ 0 ] . delay = LBCF1_DELAY_LENGTH+ o f f s e t ;
l b c f [ 0 ] . buf_len = LBCF1_DELAY_LENGTH+ o f f s e t ;

l b c f [ 1 ] . pbuffer = &l b c f 2 _ b u f [ 0 ] ;
l b c f [ 1 ] . delay = LBCF2_DELAY_LENGTH + o f f s e t ;
l b c f [ 1 ] . buf_len = LBCF2_DELAY_LENGTH + o f f s e t ;

l b c f [ 2 ] . pbuffer = &l b c f 3 _ b u f [ 0 ] ;
l b c f [ 2 ] . delay = LBCF3_DELAY_LENGTH + o f f s e t ;
l b c f [ 2 ] . buf_len = LBCF3_DELAY_LENGTH + o f f s e t ;

l b c f [ 3 ] . pbuffer = &l b c f 4 _ b u f [ 0 ] ;
l b c f [ 3 ] . delay = LBCF4_DELAY_LENGTH + o f f s e t ;
l b c f [ 3 ] . buf_len = LBCF4_DELAY_LENGTH + o f f s e t ;

l b c f [ 4 ] . pbuffer = &l b c f 5 _ b u f [ 0 ] ;
l b c f [ 4 ] . delay = LBCF5_DELAY_LENGTH + o f f s e t ;
l b c f [ 4 ] . buf_len = LBCF5_DELAY_LENGTH + o f f s e t ;

l b c f [ 5 ] . pbuffer = &l b c f 6 _ b u f [ 0 ] ;
l b c f [ 5 ] . delay = LBCF6_DELAY_LENGTH + o f f s e t ;
l b c f [ 5 ] . buf_len = LBCF6_DELAY_LENGTH + o f f s e t ;

l b c f [ 6 ] . pbuffer = &l b c f 7 _ b u f [ 0 ] ;
l b c f [ 6 ] . delay = LBCF7_DELAY_LENGTH + o f f s e t ;
l b c f [ 6 ] . buf_len = LBCF7_DELAY_LENGTH + o f f s e t ;

l b c f [ 7 ] . pbuffer = &l b c f 8 _ b u f [ 0 ] ;
l b c f [ 7 ] . delay = LBCF8_DELAY_LENGTH + o f f s e t ;
l b c f [ 7 ] . buf_len = LBCF8_DELAY_LENGTH + o f f s e t ;

}
void
AudioEffectFreeverb : : update ( void )
{

audio_block_t ∗block ;

i f ( ! ( block = r e c e i v e W r i t a b l e ( ) ) )
re turn ;

i f ( ! block−>data )
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re turn ;

arm_q15_to_q31 ( block−>data , q31_buf , AUDIO_BLOCK_SAMPLES) ;
arm_shif t_q31 ( q31_buf , −3, q31_buf , AUDIO_BLOCK_SAMPLES) ;
p r o c e s s _ l b c f (& l b c f [ 0 ] , q31_buf , sum_buf ) ;
p r o c e s s _ l b c f (& l b c f [ 1 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 2 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 3 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 4 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 5 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 6 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

p r o c e s s _ l b c f (& l b c f [ 7 ] , q31_buf , aux_buf ) ;
arm_add_q31 ( sum_buf , aux_buf , sum_buf , AUDIO_BLOCK_SAMPLES) ;

process_apf (&apf [ 0 ] , sum_buf , q31_buf ) ;
process_apf (&apf [ 1 ] , q31_buf , q31_buf ) ;
process_apf (&apf [ 2 ] , q31_buf , q31_buf ) ;
process_apf (&apf [ 3 ] , q31_buf , q31_buf ) ;
arm_q31_to_q15 ( q31_buf , block−>data , AUDIO_BLOCK_SAMPLES) ;

t ransmit ( block , 0 ) ;

r e l e a s e ( block ) ;
}

ctag_face24_reverb.ino

# include <Audio . h>
# include <Wire . h>
# include <SPI . h>

# include " control_ad1938 . h"

/∗
AD1938 pins Teensy gpio pins
Chip s e l e c t − 7
MOSI − 11
MISO −12
SCK −14
RESET −17
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DAC/ADCBLK −9
DAC/ADCLRCLK −23

DSDATA1 TX −22
ASDARA1 RX −13
∗/

/∗
The daisy chain connect ion of two ad1938 and Teensy are as fo l lows
AD1938 ( s lave )−>AD1938 ( master )−>Teensy ( s lave )
∗/

i n t c l a t c h _ s l a v e =6;//ad1938 s lave spi l a t c h
i n t c l a t c h =7; //ad1938 master sp i l a t c h
i n t cout =12; //spi miso
i n t c in =11; //spi mosi
i n t c c l k =14; //spi c lock
i n t r e s e t _ p i n _ s l a v e =16; //ad1938 s lave r e s e t pin
i n t r e s e t _ p i n =17; //ad1938 master r e s e t pin

AudioControlAD1938 ad1938master ;
AudioControlAD1938 ad1938slave ;

AudioMixer4 input_gain ;
AudioMixer4 l e f t _ m i x ;
AudioMixer4 right_mix ;
/∗d e f a u l t values 0 . 5 f , 0 . 8 4 f , 0 . 2 ∗/
AudioEffectFreeverb reverbL ( 0 . 5 f , 0 . 8 4 f , 0 . 2 f , f a l s e ) ; /∗ a l l p a s s gain ,

feedback , damping , s t e r e o pad∗/
AudioEffectFreeverb reverbR ( 0 . 5 f , 0 . 8 4 f , 0 . 2 f , t rue ) ; /∗adding s t e r e o

padding f o r r i g h t channel∗/

# i f 1
//only f o r s lave ++
//AudioInputTDM i 2 s _ i n ;
//AudioOutputTDM i 2 s _ o u t ;
//only f o r s lave −−

AudioSynthWaveformSine s ine1 ;

//only f o r ad138 master and teensy s lave++
AudioInputTDMslave i 2 s _ i n ;
AudioOutputTDMslave i 2 s _ o u t ;
//only f o r master −−

/∗ADC0 to DAC0∗/
//AudioConnection pc0 ( i 2 s _ i n , 0 , i2s_out , 0 ) ; // ADC1 L −> DAC1 L
//AudioConnection pc2 ( i 2 s _ i n , 2 , i2s_out , 2 ) ; // ADC1 R −> DAC1 R
/∗ f reeverb ∗/
/∗mix l e f t and r i g h t channels∗/
AudioConnection patchCord1 ( i 2 s _ i n , 0 , input_gain , 0 ) ;
AudioConnection patchCord2 ( i 2 s _ i n , 2 , input_gain , 1 ) ;
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/∗give the combined s i g n a l to f reeverb c l a s s ∗/
AudioConnection patchCord3 ( input_gain , reverbL ) ;
AudioConnection patchCord4 ( input_gain , reverbR ) ;

/∗Mix the l e f t channel∗/
AudioConnection patchCord5 ( reverbL , 0 , le f t_mix , 0 ) ;
AudioConnection patchCord6 ( reverbR , 0 , le f t_mix , 1 ) ;
AudioConnection patchCord7 ( i 2 s _ i n , 0 , le f t_mix , 2 ) ;

/∗Mix the r i g h t channel∗/
AudioConnection patchCord8 ( reverbR , 0 , right_mix , 0 ) ;
AudioConnection patchCord9 ( reverbL , 0 , right_mix , 1 ) ;
AudioConnection patchCord10 ( i 2 s _ i n , 1 , right_mix , 2 ) ;

AudioConnection patchCord11 ( le f t_mix , 0 , i2s_out , 0 ) ;
AudioConnection patchCord12 ( right_mix , 0 , i2s_out , 2 ) ;

/∗ADC1 to DAC1∗/
AudioConnection pc4 ( i 2 s _ i n , 4 , i2s_out , 4 ) ; // ADC2 L −> DAC2 L
AudioConnection pc6 ( i 2 s _ i n , 6 , i2s_out , 6 ) ; // ADC2 R −> DAC2 R

/∗ADC2 to DAC2∗/
AudioConnection pc8 ( i 2 s _ i n , 8 , i2s_out , 12) ; // ADC3 L −> DAC3 L
AudioConnection pc10 ( i 2 s _ i n , 1 0 , i2s_out , 14) ; // ADC3 R −> DAC3 R

/∗ADC3 to DAC3∗/
AudioConnection pc12 ( i 2 s _ i n , 12 , i2s_out , 8 ) ; // ADC4 L −> DAC4 L
AudioConnection pc14 ( i 2 s _ i n , 14 , i2s_out , 10) ; // ADC4 R −> DAC4 R
# i f 1//TMD16
/∗ s ine to DAC4∗/
AudioConnection pc16 ( i 2 s _ i n , 0 , i2s_out , 16) ; // ADC1 L −> DAC5 L
AudioConnection pc18 ( i 2 s _ i n , 2 , i2s_out , 18) ; // ADC1 R −> DAC5 R
/∗ s ine to DAC5∗/
AudioConnection pc20 ( i 2 s _ i n , 4 , i2s_out , 20) ; // ADC2 L −> DAC6 L
AudioConnection pc22 ( i 2 s _ i n , 6 , i2s_out , 22) ; // ADC2 R −> DAC6 R

/∗ s ine to DAC6∗/
AudioConnection pc24 ( i 2 s _ i n , 0 , i2s_out , 24) ; // s ine −> DAC7 L
AudioConnection pc26 ( i 2 s _ i n , 2 , i2s_out , 26) ; // s ine −> DAC7 R
/∗ s ine to DAC 7∗/
AudioConnection pc28 ( sine1 , 0 , i2s_out , 28) ; // s ine −> DAC8 L
AudioConnection pc30 ( sine1 , 0 , i2s_out , 30) ; // s ine −> DAC8 R

# endi f

# endi f

void setup ( ) {
f l o a t wet , wet1 , wet2 , dry , dry1 ;

const f l o a t scaleWet = 3 ;
const f l o a t scaleDry = 2 ;
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f l o a t e f fec tMix = 0 . 5 ; // only wet
f l o a t width = 0 . 5 ; // complete sep era t io n (1 no e f f e c t from the other channel

)

# i f 1

wet1 = scaleWet ∗ e f fec tMix ;
dry1 = scaleDry ∗ (1.0− e f fec tMix ) ;

wet =wet1 /( wet1+dry1 ) ; // s c a l i n g
dry =dry1 /( wet1+dry1 ) ;

wet1 = wet ∗ ( width /2.0 + 0 . 5 ) ;
wet2 = wet ∗ ( 1 . 0 − width ) / 2 . 0 ;

input_gain . gain ( 0 , 0 . 5 ) ;
input_gain . gain ( 1 , 0 . 5 ) ;

/∗
wet1 = 1 . 0 ; wet2 =0; dry = 1 . 0 ;
∗/
/∗ l e f t channel matrix∗/
l e f t _ m i x . gain ( 0 , wet1 ) ;
l e f t _ m i x . gain ( 1 , wet2 ) ;
l e f t _ m i x . gain ( 2 , dry ) ;

/∗ r i g t channel matrix gain∗/
right_mix . gain ( 0 , wet1 ) ;
r ight_mix . gain ( 1 , wet2 ) ;
r ight_mix . gain ( 2 , dry ) ;
# endi f

// put your setup code here , to run once :
delay ( 2 0 0 0 ) ;
S e r i a l . begin ( 1 1 5 2 0 0 ) ;
s ine1 . frequency ( 4 4 0 ) ;
s ine1 . amplitude ( 0 . 4 ) ;

# i f 1
ad1938slave . s p i I n i t ( c l a t c h _ s l a v e , r e s e t _ p i n _ s l a v e , cout , cin , c c l k ) ;
delay ( 2 0 0 ) ;
//ad1938slave . conf ig ( FS_48000 , BITS_24 , I2S_TDM_8CH , AD1938_I2S_SLAVE ) ;
ad1938slave . conf ig ( FS_48000 , BITS_16 , I2S_TDM_16CH , AD1938_I2S_SLAVE ) ;
ad1938slave . volume ( 1 ) ;

delay ( 2 0 0 ) ;

# endi f

# i f 1
/∗ conf igure AD1938 ( s lave ) wit ∗/
ad1938master . s p i I n i t ( c l a t c h , rese t_pin , cout , cin , c c l k ) ;
delay ( 2 0 0 ) ;
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//ad1938master . conf ig ( FS_48000 , BITS_24 , I2S_TDM_8CH , AD1938_I2S_MASTER ) ;
ad1938master . conf ig ( FS_48000 , BITS_16 , I2S_TDM_16CH , AD1938_I2S_MASTER ) ;
ad1938master . volume ( 1 ) ;
ad1938master . enable ( ) ;
ad1938slave . enable ( ) ;

# endi f
AudioMemory ( 2 5 6 ) ;
AudioInterrupts ( ) ;

AudioProcessorUsageMaxReset ( ) ;
AudioMemoryUsageMaxReset ( ) ;

reverbL . processorUsageMaxReset ( ) ;
}

void loop ( ) {
// put your main code here , to run repeatedly :
S e r i a l . p r i n t ( "\n" ) ;
S e r i a l . p r i n t ( "CPU: " ) ;
S e r i a l . p r i n t ( " f reeverb l e f t =" ) ;
S e r i a l . p r i n t ( reverbL . processorUsage ( ) ) ;
S e r i a l . p r i n t ( " , " ) ;
S e r i a l . p r i n t ( reverbL . processorUsageMax ( ) ) ;
S e r i a l . p r i n t ( " " ) ;
S e r i a l . p r i n t ( " Freeverb r i g h t =" ) ;
S e r i a l . p r i n t ( reverbR . processorUsage ( ) ) ;
S e r i a l . p r i n t ( " , " ) ;
S e r i a l . p r i n t ( reverbR . processorUsageMax ( ) ) ;
S e r i a l . p r i n t ( " " ) ;
S e r i a l . p r i n t ( " I2S =" ) ;
S e r i a l . p r i n t ( i 2 s _ i n . processorUsage ( ) ) ;
S e r i a l . p r i n t ( " , " ) ;
S e r i a l . p r i n t ( i 2 s _ i n . processorUsageMax ( ) ) ;
S e r i a l . p r i n t ( " " ) ;
S e r i a l . p r i n t ( " a l l =" ) ;
S e r i a l . p r i n t ( AudioProcessorUsage ( ) ) ;
S e r i a l . p r i n t ( " , " ) ;
S e r i a l . p r i n t ( AudioProcessorUsageMax ( ) ) ;
S e r i a l . p r i n t ( " " ) ;
S e r i a l . p r i n t ( "Memory : " ) ;
S e r i a l . p r i n t ( AudioMemoryUsage ( ) ) ;
S e r i a l . p r i n t ( " , " ) ;
S e r i a l . p r i n t ( AudioMemoryUsageMax ( ) ) ;
S e r i a l . p r i n t ( " " ) ;

S e r i a l . p r i n t l n ( ) ;
delay ( 1 0 0 0 ) ;

}
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