
Synchronized real time audio streaming

over ethernet in embedded systems

A thesis submitted for the degree Master of Science

in Information Technology

submitted by

Indumathi Duraipandian 926286
Fachbereich Informatik und Elektrotechnik

Fachhochschule Kiel

January 2018

Department or School Web Site URL Here (include http://)
University Web Site URL Here (include http://)


Declaration of Authorship

I, Indumathi Duraipandian, declare that this thesis titled, ‘SYNCHRONIZED REAL

TIME AUDIO STREAMING OVER ETHERNET IN EMBEDDED SYSTEMS’ and

the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i



Abstract

In any complex audio video networks such as professional audio recording studios, au-

tomotive or in-flight infotainment systems, concert avenues or even home entertainment

systems, the connection between the various audio/ video sources and sinks are mostly

analog, point to point and serve a single purpose. This leads to tonnes of confusing

cables, each cable serving a specific data exchange. Even the digital solutions such as

I2S, S/PDIF, AES3 for short distance connections, most for automotive applications and

Firewire (IEEE 1394), HDMI or audio over USB for high bandwidth applications, still

require purpose built cables and proprietary software to work correctly and still they

lack interoperability. Ethernet is now ubiquitous and offers high bandwidth for low cost

over reasonable distances, so it makes sense to use Ethernet for audio/video streaming.

The only limitation of Ethernet networks is that, since it is a packet switched network

offering reliable, real time delivery of media is a challenge. To overcome this limitation

and use the Ethernet networks for reliable, real time, flexible audio/video streaming, a

set of protocols have been developed. These set of protocols required for a synchronized

real time streaming is called the Audio Video Bridging(AVB). This is a relatively new

standard and currently there are only a handful of implementations that make use of

this standard. Our study discusses the implementation of AVB as a part of the open

source Linux kernel which can be used and improved by anyone irrespective of appli-

cations. The study aims at building AVB stack for an open source hardware Beagle

Board and study the various metrics such as latency, synchronization, throughput etc.

between devices like Beagle Bone Black and Beagle Board X15 along with documenting

the interoperability with off the shelf AVB devices such as MAC OSX laptops.



Acknowledgements

Its my pleasure to take opportunity for preparing master thesis report on ’Synchronized

real time audio streaming over Ethernet in embedded systems’ application. I thank from

the core of our heart to Fachhochschule Kiel for permitting me for carry out the project.

First of all my hearty thanks to Prof.Dr.Robert Manzke who helps me in every possible

manner that ensured a proper environment to work and allowed complete freedom and

reposed complete faith in my work. He makes me aware about all the aspect of the

system & its requirement deeply. I thank him for being a constant source of inspiration

and for his advice that will help in my future in this professional field. He ensures the

proper completion of project by reviewing my progress at the appropriate stages of the

project development. His guidance and inspiration change this project into a faithful

and meaningful exercise.

Being a newbie to all the technologies, I had really good hands on experience with these

technologies now. After completing this project I came to know that learning technology

is much more different than applying technology practically in any application.

I also owe our sincere thanks to all the friends who directly or indirectly helped me with

their valuable suggestions. Their warm-hearted guidance acted like a lamp in darkness.

. . .

iii



Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

Abbreviations viii

1 Introduction 1

1.1 Audio Video Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Established solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Audio over Ethernet Protocols . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Need for AVB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Objectives and Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 10

2.1 Open Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Open Anvu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 XMOS Xcore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Miscellaneous Solutions . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Proprietary Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Technical Background 16

3.1 BeagleBone Black . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Ethernet Time stamping . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Audio Cape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Linux Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Linux Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 System calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Device drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.4 Networking stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.5 ALSA Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Audio Video Bridging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Generalized Precision Time Protocol(gPTP) . . . . . . . . . . . . . 27

iv



Contents v

3.3.2 Multiple Stream Reservation Protocol (MSRP) . . . . . . . . . . . 33

3.3.3 Forwarding and Queuing for Time-Sensitive Streams (FQTSS) . . 37

3.3.4 AVB Discovery, Enumeration, Connection management and Con-
trol (AVDECC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.5 Audio Video Transfer Protocol (AVTP) . . . . . . . . . . . . . . . 46

4 Implementation 50

4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 gPTP Daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Peer Delay Measurement State Machine . . . . . . . . . . . . . . . 55

4.2.2 Best Master Selection State Machine . . . . . . . . . . . . . . . . . 56

4.2.3 Time synchronization State Machine . . . . . . . . . . . . . . . . . 57

4.3 AVB ALSA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Loadable Kernel Module . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Platform Device Driver . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 ALSA Audio Driver Framework . . . . . . . . . . . . . . . . . . . . 62

4.3.4 AVDECC Talker and Listener . . . . . . . . . . . . . . . . . . . . . 66

4.3.5 MSRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.6 AVTP Talker and Listener . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Test Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 Features and Limitations . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.3 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 80

5 Development 86

5.1 Google Summer of Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Evaluations 90

6.1 Delay Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Clock Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Synchronization Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 MAC AVB Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Limitations 101

8 Conclusion 102

A Evaluation Logs 104

A.1 Delay variance measurement logs . . . . . . . . . . . . . . . . . . . . . . . 104

A.2 Clock drift measurement logs . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.3 MAC AVB Diagnosis log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 112



List of Figures

2.1 XMOS XCore 200 with AVB [1] . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 BeagleBone Black [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Linux kernel Architecture [3] . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 gPTP - Peer delay measurement [4] . . . . . . . . . . . . . . . . . . . . . 29

3.4 Stream Reservation Protocol [5] . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 AVDECC Entity Model [6] . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 gPTPd - Main Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 gPTPd - Peer Delay Measurement State Diagram . . . . . . . . . . . . . . 56

4.4 gPTPd - Best Master Selection State Diagram . . . . . . . . . . . . . . . 57

4.5 gPTPd - Time Synchronization State Diagram . . . . . . . . . . . . . . . 58

4.6 Platform device-driver initialization . . . . . . . . . . . . . . . . . . . . . . 60

4.7 ALSA AVB audio driver initialization . . . . . . . . . . . . . . . . . . . . 63

4.8 AVDECC Workqueue Flow Diagram . . . . . . . . . . . . . . . . . . . . . 66

4.9 AVDECC Listen and Respond Flow Diagram . . . . . . . . . . . . . . . . 68

4.10 MSRP Workqueue Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . 69

4.11 AVTP AVB Playback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.12 AVTP AVB Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.13 Demo Setup AB - Variation 1 . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.14 Demo Setup AB - Variation 2 . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.15 Demo Setup XY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.16 AVB Test Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.17 AVB Test Application - Playback Thread . . . . . . . . . . . . . . . . . . 83

4.18 AVB Test Application - Record Thread . . . . . . . . . . . . . . . . . . . 85

6.1 gPTP Delay Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 gPTP Delay Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Hardware Clock Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Full Record of Synchronization test . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Audio Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 MAC AVB Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vi



List of Tables

3.1 gPTP Common Message Header . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 gPTP Message Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 SRP Common Message Format . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 SRP Attribute Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 AVDECC Common Header . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 ADP Data Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 AECP Data Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 ACMP Data Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 ACMP Message Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.10 AVTP Data Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.11 AVTP Data Unit - AAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.12 AAF 8 channel 16 bit PCM payload . . . . . . . . . . . . . . . . . . . . . 49

vii



Abbreviations

VoIP Voice over Ineternet Protocol

TRS Tip Ring Sleeve

NIC Network Interface Card

MRP Media Redundancy Protocol

MMRP Multiple MAC Registration Protocol

AVB Audio Video Bridging

gPTP generalized Precision Time Protocol

PTP Precision Time Protocol

SRP Stream Reservation Protocol

MSRP Master Stream Reservation Protocol

FQTSS Forwarding and Queuing for Time-Sensitive Systems

AVDECC AVB Discovery,Enumeration Connection management and Control

CAN Control Area Network

viii



Chapter 1

Introduction

This chapter introduces the audio/video systems that we use everyday in detail along

with their various properties that they exhibit and the various requirements and lim-

itations by which they are defined by. Furthermore down the technical challenges of

designing and operating such systems are explained, which is followed by an in depth

look into the current solutions available and discuss their merits and demerits. Through

these discussions the need for a new improved solution for audio/video streaming is

explained. The Audio Video Broadcasting protocol suite is presented as a possible can-

didate which fits the requirements listed. And finally the objectives required to assess

the various features of AVB are listed.

1.1 Audio Video Systems

In the current ”Information Age” we are constantly surrounded by all kinds of infor-

mation processing systems. A most significant part of the information that we produce

and consume is in the form of Audio/Video. Although much can be said about the

audio/video information itself, here we concentrate more on the systems that are used

in the production, distribution and consumption of these audio/video data. More specif-

ically we are concerned in the embedded systems that are involved inside the several

audio/video systems anywhere in the production-distribution-consumption chain. Based

on the properties of the data and other parameters, these systems can be broadly grouped

into two different kind of categories as listed below.

1



Synchronized real time audio streaming over ethernet in embedded systems 2

• Infotainment Systems:

– Any form of audio video data produced and consumed for the purpose of

entertainment or information distribution falls in this category.

– These include movies, television, music albums, news broadcasts, educational

programs etc...

– In these systems large amounts of data are produced and consumed, hence

high bandwidth interconnections are required.

– These systems tend to me more of an one way communication.

– For a single producer there can be a multitude of consumers.

• Communication Systems:

– Real time communication via mobile telephone systems, VoIP, video confer-

encing, virtual presence devices etc... fall in this category.

– Here synchronized, low latency systems are preferred.

– These are most often two way communication systems, but there also can be

one way communications.

– Can be between two or also between a group of producers and consumers.

For any audio video system there are several parameters which needs to be considered

when designing and building a system. Some of the most important of these parameters

are described in detail below. All further discussions regarding audio video systems are

discussed in terms of these parameters.

• Bandwidth:

– Defined as the amount of data which is able to be transferred between two

devices at any given time through the connection medium.

– For systems which handle multi-channel, high resolution, high sample rate

audio streaming and high resolution video streaming higher bandwidth is

required.

– The bandwidth required also increases if a single device is connected to several

devices through single connection medium.



Synchronized real time audio streaming over ethernet in embedded systems 3

• Latency

– Defined as the time required for the propagation of the audio from the source

to the destination.

– In general and specifically for communication systems low latency is preferred.

• Synchronization - All the devices in the network should work as if they are part

of a one single large system.

• Cost efficiency - The cost of such an interconnect has to be affordable.

• Scalable - It should be possible to increase capacity without much complexity.

• Modular - Should be possible to be built from simple modules and should work

with a minimal set of modules.

1.2 Technical Challenges

To understand the technical challenges in designing and operating the audio video sys-

tems, some real world examples of such closed audio/video systems are given below along

with the requirements for these systems in terms of the vital parameters discussed in

the previous section.

1. Professional Studios:

• Made up of several input devices (Several musical instruments, vocals, sig-

nal/effect generators etc..).

• When a recording is live, audio data from all these devices should be syn-

chronized and then fed into the mixers/post-processors/encoders etc...

• The end result from the encoders can be either broadcasted further or stored

on a storage medium.

• The synchronization between various devices is very important here or else

we will end up with a recording with out of sync instruments which could not

be considered as pleasant music.

2. Theaters/Stadiums/Concert Halls:



Synchronized real time audio streaming over ethernet in embedded systems 4

• These also contain a multitude of audio inputs connected to mixers/post

processing nodes and encoders.

• The output from these mixers can be routed for the amplifier systems for live

replay or for broadcasting and also for storage

• But unlike recording studios where faults can be tolerated and any changes

to the systems done offline, these systems should be fault tolerant and should

be flexible to be reconfigured live.

3. Infotainment:

• Consists of a large number of receiver devices connected to a central media

server, a public addressing system which overrides media consumption and a

private communication system for the crew.

• The main requirement is to handle high volume of data in low priority and a

small amount of data in high priority.

• Making sure the high priority communication systems gets bandwidth over

high bandwidth media streams is vital for safety and security

• Although synchronization is not required between the different receivers, the

connections should be able to run parallel to each others.

4. Home media centers:

• These are made up of all of the consumer electronic devices typically used in a

home environment. (Home media servers, media players, television, speakers

and everything else which can send or receive media).

• The main requirements in these systems are ease of use (plug and play), high

bandwidth and fault tolerance.

1.3 Established solutions

The previous sections established the different parameters involved in designing an audio

video system and the different requirements involved in operating the various real world

audio video systems. This section documents the various solutions that are currently

available for the interconnections between various devices to transport audio/video data



Synchronized real time audio streaming over ethernet in embedded systems 5

in the systems. The interconnection systems are currently used are listed below along

with their unique characteristics, advantages and disadvantages [7] [8] [9].

• Analogue Connections

– Uses electrical signals over common electrical cables or twisted pair cables to

directly transfer audio video signals and uses Tip Ring Sleeve (TRS) or RCA

connectors

– Audio is transferred as either balanced or unbalanced signals, while videos is

transferred as either composite (Color, video, blank, sync), S-video or com-

ponent (RGB / YCbCr) signals.

– Advantages of analogue connections are as follows

∗ As the signals travel near the speed of light, latency is virtually non-

existent for everyday usage cable lengths

∗ Simple to setup and operate. High portability as most of the devices

support analogue connections

∗ As there is no latency, synchronization can be achieved without much

further effort and it is cost effective as it uses off the shelf and simple

components

– Dis-advantages of analogue connections are as follows

∗ Signal quality deteriorates quickly as the cable or connector quality re-

duces and with increasing noise

∗ No multiplexing possible, a separate connection has to be setup for every

single different media source or sink

∗ Depending on the cable quality and operating environments signal booster

and other post processing equipments are needed additionally where re-

quired

• Digital media specific connections:

– Audio/Video signals are digitized, encoded and transmitted as binary signals

organized in a fixed frame structure

– The signals are usually transmitted over electrical, optical or coaxial cables

with RCA, TOSLINK and BNC connectors respectively [8].



Synchronized real time audio streaming over ethernet in embedded systems 6

– Protocols such as SPDIF, AES, ADAT, DVI and HDMI are used for the

packing and framing of the audio samples along with specification for the

electrical or optical signal levels.

– Advantages of digital audio connections are as follows

∗ Provides better bandwidth than analog connections are a single con-

nection can carry multiple channels of audio streams in higher bit and

sampling rates

∗ More resistant to noise and signal degradation because of cable length

and other factors

∗ Mature standards with support from several audio video device manu-

facturers

∗ Some kind of synchronization can still be achieved by also transmit-

ting media clocks over separate interface and synchronizing based on

the transmitted clock.

– Dis-advantages of digital audio connections are as follows

∗ Because of the additional processing required the overall system latency

increases and the exact latency value varies from device to device de-

pending on implementation

∗ Portability is little low since different protocols are not inter compatible

and additional equipment might be required to transfer signals between

different technologies

∗ Because of the additional chips required or encoding and decoding along

with the special cabling required the cost of the system increases.

• Digital general purpose connections

– These connections are designed to be general purpose to carry any kind of

data in parallel. Because of their general purpose nature they can also carry

media data

– Protocols such as USB, Firewire, Thunderbolt, Ethernet are some examples

for such general purpose connections.

– All these specifications also define their own specific kind of cabling and

connectors and all the physical layer specifications.



Synchronized real time audio streaming over ethernet in embedded systems 7

– Advantages of digital general purpose connections are as follows

∗ Provides the best bandwidth of any kind of connections and also provides

the possibility to compress the media information and thereby increasing

the available bandwidth even more

∗ Easy to setup and operate since these protocols are used by everyone and

so many of these protocols provide plug and play functionality

– Dis-advantages of digital general purpose connections are as follows

∗ As it is not optimized for real time traffic latency can be higher and also

jitter is higher

∗ Because of the high jitter and a tendency to send data in short bursts

instead of regular streams synchronization is very difficult in these con-

nections.

1.4 Audio over Ethernet Protocols

Among the several of the digital audio interconnection mediums listed in the previ-

ous section, Ethernet has several inherent advantages. Because of this reason there

are several protocols developed under the ”Audio over Ethernet” model, some notewor-

thy protocols among them are COBRANET, Ethernet, Ravenna, AES67, Dante and

AVB/TSN [8]. And among these protocols Dante is a mature protocol which has been

well adopted by the industry and supported by several manufacturers. Some of the

advantages and disadvantages [10] [11] [12] of the Dante protocol is listed below:

• Dante has a large adaptation among other protocols in the industry with several

devices available in the market with support of the protocol.

• It supports synchronized streaming of multi-channel, high sampling rate audio

streams with low latency.

• The dante systems are easily scalable and they support plug and play functionality

in most common operating systems such as windows and MAC.

• But Dante is a closed and proprietary system developed by Audinate Inc., which

implies royalties, no flexibility in improvements and several other constraints.



Synchronized real time audio streaming over ethernet in embedded systems 8

1.5 Need for AVB

As discussed above there are several options for interconnections for media devices avail-

able. But none of the connections provide a complete better performance over all the

parameters. For example the general purpose digital connections provide good band-

width and ease of operation, but they are very bad for latency and synchronization.

On the other hand the digital media connections provide better latency control and

synchronization but they provide only a fixed bandwidth and are difficult to setup and

reconfigure.

Since the requirements for media streaming grows (high definition and even ultra high

definition 4K video streaming, multiple channel surround sound systems, personalized

entertainment systems becomes more common, which also increases the demand for

content creators to create more content and in some cases high bandwidth real time

content), the traditional solutions are stretched to their limits and can no longer support

the future streaming requirements in a cost effective way along with keeping the quality

of service to a high level. This leads to a conclusion that a new solution is needed to be

developed.

Among the several possible solutions proposed, AVB which is based on Ethernet net-

works has gained traction and is set to replace established media streaming solutions in

the near future. Ethernet was chosen as it provides high bandwidth in a cost effective

way and already the adaption of Ethernet is high as it is virtually available everywhere.

It is also more flexible to develop new specifications that provides the real time synchro-

nized media data transfers required. Because of these various advantages AVB is a good

solution for synchronized real time audio streaming in embedded systems.[13]

1.6 Objectives and Thesis outline

As discussed in the previous sections, Audio Video Bridging(AVB) promises to fulfill

the requirements for a synchronous real time media transfer for embedded system over

Ethernet networks. The goal of this study aims to test the various features of the

AVB media streaming in a real embedded system environment and study the various

operational parameters. To fulfill this goal the following objectives are set:



Synchronized real time audio streaming over ethernet in embedded systems 9

• Study of the current available solutions that implement AVB and their features

and limitations.

• Implement the various protocols in the AVB stack in the an embedded system

platform that is publicly available.

• Evaluation and documentation of the various features of the streaming and the

various parameters that define a media streaming such as synchronization, latency,

throughput etc...

• Discuss the results and provide a conclusion for the feasibility of AVB as a solution

for a synchronized real time audio streaming system on Linux embedded systems

which is cost effective, simple to use and provides a high quality of service



Chapter 2

Literature Review

The IEEE 802.1 and IEEE 1722 related specifications for Audio Video Bridging are

available as standards since the early 2010s. Since then there have been implementations

for the Audio Video Bridging systems. In this section, some of the most prominent of

such implementations are reviewed and discussed along with their offered features and

limitations along with their advantages and disadvantages.

2.1 Open Solutions

The following are some of the open source solutions for the AVB protocols implementa-

tion.

2.1.1 Open Anvu

The Anvu Alliance is an industrial consortium of various companies from different back-

grounds such as automotive, consumer electronics and industrial systems manufacturers

with common interest is media applications. It was created on 2009 by Broadcom, Cisco,

Harmann, Intel and Xlinx. The main objective of this alliance is to work together to

establish and certify the systems which implement the Audio Video Bridging systems

so that these certifies systems work together seamlessly without the need for any mod-

ifications or additional configuration. The Anvu alliance provides an Anvu logo which

assures that the device has been certified.

10



Synchronized real time audio streaming over ethernet in embedded systems 11

Additional to the certification process the Anvu alliance also sponsors the development

of the Open Anvu project. It was first initiated by Intel to encourage the collaboration

in development of AVB systems. Collaborating in development ensures standardization,

stability and interoperability between systems. The code is released under BSD and

GPLv2 Licensing terms and collaborations are always welcomed. The project is still

under development to improve and add various new features. The various components

and features and in general the advantages of this project are listed below:

4 A Network Interface Card (NIC) driver for Intel devices under Linux that supports

the various AVB requirements for a NIC driver.

4 A MRP daemon that supports the set of IEEE802Q-2011 MSRP, MVRP and

MMRP protocols which are used to stream reservation and VLAN registrations.

4 A gPTP daemon that implements the IEEE802.1AS-2011 protocol for the time

synchronization.

4 Apart from the libraries sample codes for a simple talker and listener are provided

as an example how to use the various provided libraries to build a AVB system.

4 As the libraries developed as a collaboration effort interoperability and stability

of the implementations are high.

Apart from the various features and obvious advantages of this project there some dis-

advantages or limitations of this project some of which are listed below.

7 Although several modules required for AVB are implemented it is not yet a com-

plete solution which can be directly used to develop a complete working system

7 The project is still under development and some modules required for a complete

AVB system such as AVDECC and AVTP are not yet implemented

7 Not compatible with all software and hardware platforms



Synchronized real time audio streaming over ethernet in embedded systems 12

2.1.2 XMOS Xcore

XMOS is a fabless semi conductor company which designs voice processing, music pro-

cessing and control micro controller designs. Most of the chips contain multi-core pro-

cessors capable or concurrent real time operations with DSP core and control modules.

It has several devices based on the XCore technology namely XCore Voice, Voice fusion,

for voice applications, XCore Audio for audio processing and XCore 200 and Xcore XS1-

L for multi-core applications. The XMOS XCore architecture provide various features

of real time operation systems such as scheduling, I/O operations and inter process com-

munications. As all these scheduling happens in the hardware in the end the responses

to events can be very fast in nanoseconds precision. The AVB implementation in the

XMOS XCore Audio processor [1] is the worlds first to pass the Anvu Alliance certifica-

tion and to get the Anvu logo. A basic architecture of an XMOS XCore Audio is given

the following figure

Figure 2.1: XMOS XCore 200 with AVB [1]

The software used for the XMOS XCore Audio systems are maintained by XMOS as

a open source development [14]. It is the base for the firmware code for the reference

implementation of the AVB protocols for XMOS silicon. The features and advantages

of the XMOS Xcore Audio AVB solution are as follows



Synchronized real time audio streaming over ethernet in embedded systems 13

4 Almost complete support for all the related protocols in the AVB protocol as a

single ready to use solution

4 The dedicated hardware provides assured performance, reliable and accurate be-

havior.

4 The first Anvu certified implementation which assures reliable performance and

interoperability

The limitations and disadvantages are listed below,

7 Purpose built solution which supports only the XMOS XCore processors in sup-

ported models

7 As solutions are externally implemented as a separate and at-least partly with

hardware, it increases the hardware bill of materials and it is hard to reconfigure

7 Again as purpose built solution it is not very cost effective

2.1.3 Miscellaneous Solutions

Apart from the major AVB open source solutions described above there are some more

open source implementations [15] [16] available for the individual protocols in the AVB

protocols. Some of these protocol implementations are listed below

Ü Several implementations for the IEEE 1722.1 AVDECC controller, talker and lis-

teners as libraries and or applications [15]

Ü Several PTP daemons implementing the IEEE 1588 Precision Time Protocol (PTP)

and the IEEE 802.1AS gPTP protocols for the time synchronization [15] [16]

Although these standalone implementations provide reference implementations for sev-

eral of the protocols in the AVB stack,they do not provide a complete solution for the

synchronized media streaming requirements since they are standalone solutions. Even

though it is possible to combine several of these implementations to build a complete

AVB solution, interoperability could still be an issue.



Synchronized real time audio streaming over ethernet in embedded systems 14

2.2 Proprietary Solutions

Apart from the open source community driven developments there are several propri-

etary solutions are available for AVB synchronized media streaming. As in most cases in

the proprietary solutions source code and most of the implementation details are not in

public domain, we look into the end products and their features. Some of these products

with proprietary solutions are listed below.

Ü Macintosh Operating System

Û The MAC OS has inbuilt support for AVB and synchronized audio streaming

over Ethernet since Mac OS version 10.9 Mavericks

Û Although the initial implementation is basic, the features has grown matured

in the latest versions

Û But not all models are supported Macbook Pro and iMac are generall sup-

ported and Macbook air and similar devices are not supported

Û OS X devices also support AVB Ethernet through the tunderbolt ports using

a Thunderbolt to Ethernet adapter

Û When a AVB connection to a AVB supported device is setup all the audio

applications in the device can stream audio through AVB

Ü MOTU Sound Cards

Û MOTU provides a range of external audio devices with Ethernet AVB support

and a range of conventional audio connections

Û MOTU also provides a collection of AVB enabled Network switches to build

a larger AVB network with many devices in it

Û MOTU devices are also certified by tha Anvu alliance and provide mature

devices which can inter-operate seamlessly with other devices

Û Most of the MOTU devices can be used for semi professional to high end

consumer audio applications

Ü AVID VENUE Pro-Audio

Û AVID VENUE range of devices provide professional quality audio recording

and distribution systems with inbuilt support for AVB



Synchronized real time audio streaming over ethernet in embedded systems 15

Û For example the AVID VENUE S3L systems has 3 Gigabit Ehternet port

with AVB support enabled

Û These devices are exclusively used for professional audio applications

Ü Excelfore eAVB Automotive Systems

Û Excelfore provides Ethernet AVB solution for Automotive applications ported

for several hardware platforms and several operating systems

Û Apart from Audio, it is also provide possibility for video streams along with

other regular Ethernet traffic and also acts as bridging network most auto-

motive network traffic such as LUN and CAN etc...



Chapter 3

Technical Background

For evaluation of AVB in an embedded system environment, AVB stack software is

developed over Linux operating software in a BeagleBone Black development platform.

This chapter elaborates the technical specifications of the various standards involved in

the AVB stack, an introduction to the Linux operating system along with the interfaces

provided for development of AVB standards and finally the features of the BeagleBone

Black platform are described in detail.

3.1 BeagleBone Black

BeagleBone Black is a low cost high performance development platform aimed at devel-

opers and hobbyists. It is extensively used to develop applications in the fields of mul-

timedia, connectivity, prototyping, robotics etc... It is mainly built around a AM335x

Sitara line of microprocessors from Texas Instruments, which are based on ARM cortex

A8 main processor running at a maximum of 1 GHz. They are optimized for image

and graphical processing applications with several inbuilt peripherals and a multitude of

interface options. Apart from the ARM cortex core, there are dedicated processing core

for 3D graphic acceleration, a NEON SIMD co-processor as floating point acceleration

and two Programmable Realtime Units (PRU) that run on a separate clocks and has

access to a different set of exclusive peripherals. Some key features of the BeagleBone

Black can be summarized as below.

• AM335x Siatra Processor. 2000 MIPS @ 1 GHz

16



Synchronized real time audio streaming over ethernet in embedded systems 17

• 500 MB DDR3L @ 800 MHz

• 4 GB embedded MMC onboard flash

• 2x USB, 1x UART, 1x mini micro SD card port, 1x HDMI and 1x 10/100 RJ45

Ethernet connector

• 2x 46 pin expansion headers through which up to 4 expansion devices can be

connected

• Also available are headers for battery connection for stand alone operation and a 5v

power connector along with power switches, power indicators and other indicators.

Figure 3.1: BeagleBone Black [2]

The BeagleBone Black can be further enhanced via the usage of capes, which are ba-

sically expansion boards which directly connects to the 46 pin headers P8 and P9. A

special feature of these capes are that the unused pins from the headers are passed



Synchronized real time audio streaming over ethernet in embedded systems 18

through the capes and so further capes are added on top of other capes (with a maxi-

mum limit of four capes). These capes add additional functionality of the BeagleBone

Black with some additional hardware interfaced through the expansion headers. Some

examples of capes are as follows.

• The onboard HDMI and eMMC are also considered as virtual capes as they are

connected to the interface from the expansion headers.

• Power cape for managing any batteries connected and also monitor, charge and

regulate the battery power.

• LCD, RS232, CAN and other interface capes for connecting external display and

communication protocol.

• Audio, video expansion capes to extend the audio video interfacing options of the

BeagleBone Black.

3.1.1 Ethernet Time stamping

The Ethernet module on board the BeagleBone Black and subsequently the AM335x

processor, support hardware time stamping for Ethernet packets, which is required for

the implementation of the Precision Time Protocol as described in section 3.3.1. The

PTP is the crucial protocol required to synchronize the different devices communicating

via the Ethernet network.

There are three different possibilities for generating time stamps for Ethernet frames,

they are as listed below.

• Software Time stamping:

– In this method the time stamping is done completely in the software side in

the socket processing.

– As this is software the the variations in time measurement can be huge as this

Ethernet packets can suffer variable delays in the software Ethernet queues.

– This can be lead to time synchronization with in the such a system to only

in the range of several hundred micro seconds to few milliseconds.



Synchronized real time audio streaming over ethernet in embedded systems 19

– Although this synchronization is sufficient to some systems it is not sufficient

enough synchronization for most real time systems and also this level of syn-

chronization can also be achieved through other existing protocols such as

Network Time Protocol (NTP).

• SFD Time stamping:

– The SFD (Start of frame Detection) time stamping works by time stamping

in the hardware at the MAC layer when the Ethernet physical transceiver

detects the start of the Ethernet frames.

– This way of time stamping provides high levels of synchronization enough for

the real time media synchronization.

• Hardware Time stamping:

– In hardware time stamping the time stamps are directly generated by the

Ethernet physical transceiver thus ensuring higher levels of accuracy.

– When low or sub nano second time synchronization accuracy is required then

hardware time stamping has to be employed.

The support for hardware time stamping of Ethernet packets in the AM335 processors

are handled by the Common Platform Time Sync (CPTS) module inside the processor

in the Start of frame Detection (SFD) time stamping method. This module will detect

the precise ingress and egress time of the various commands belonging to the PTP are

received or transmitted through the Ethernet physical layer.

3.1.2 Audio Cape

As a bare BeagleBone Black development board doesn’t contain any on-board audio out-

put (apart from the audio through HDMI which is not analog and could be compressed),

if audio output is required the functionality has to be extended via audio capes for Bea-

gleBone Black. One such audio caoe for the beagle bone black is the CTAG face 2—4

device. [17]. This device supports 2 stereo input channels and 4 stereo output channels.

Also a full featured audio ALSA driver is available to interface this device with the

beagle bone black.



Synchronized real time audio streaming over ethernet in embedded systems 20

3.2 Linux Operating System

An operating system is a collection of software modules that are responsible for managing

a hardware platform (Initialize, start-up and manage communication to and fro the

hardware components) and provide an unique interface for user space applications (office

applications, media players, browsers and other such utilities). This way an operating

system presents an abstract view of hardware for user application developers so that

they do not need to be concerned about the underlying hardware.

Linux is a name referring to a family of operating systems that are packaged around

the Linux kernel. There are several Linux distributions (”distros” in short) available

for every kind of application and every kind of platform it will run on. Linux based

operation system are capable of running from a very basic microprocessor with few

mega bytes of RAM to state of the art super computer clusters operating at the cutting

edge of computing performance. In such way Linux is flexible and modular enough to

fit to any hardware platform. These properties come from the philosophy of open source

development where any one is able to use the existing Linux source as their starting

point and modify it according to their needs or according to their hardware platform.

This decentralized way of development means fast adaptation of new features and new

hardware platforms.

The various modules inside a Linux operating system are described in detail in the

following chapters.

3.2.1 Linux Kernel

A kernel is a small, high performance and highly optimized software component respon-

sible for the overall management of the hardware components, user level software and

all the communication between them.

Depending on how they are organized, there are several types of kernels namely

• Monolithic kernels where all the kernel operations are completely implemented in

a single kernel processing thread which increases processing speed but are prone

to stability issues as the code base grows



Synchronized real time audio streaming over ethernet in embedded systems 21

• Micro kernel where the kernel is as small as possible holding only the very basic of

kernel operations with every other functionalities implemented in the user space.

Although this approach leads to slower system performance, it provides much

better stability and security as the small code base can be tightly controlled.

• Hybrid kernels which are a combination of monolithic and micro kernel features

• Nano kernels which are similar to micro kernel but still smaller than micro kernels

• Exo kernels where only the hardware management is part of the kernel with no

hardware abstraction, thus forcing the application developers to directly handle

the hardware.[18]

The three main functionalities of a kernel is as follows.

• Scheduling

– Multitasking is a major feature for any operating system where the user is

able to execute several different operations at any given time

– This is usually done by time slicing the access to the main processor for the

several different applications that are executing at any given time

– There are several different approaches to how a time slicing organized such

as preemptive, fixed priority preemptive, round robin etc...

• Memory management

– Similar to the main processor, the main memory is also a very important sys-

tem resource which has to be shared among the several running applications

– There are several approaches for handling memory management such as vir-

tual addressing, segmentation and paging

• I/O management

– Apart from the main processor and the main memory the operating systems

is also responsible for management and handling of several different internal

and external hardware components



Synchronized real time audio streaming over ethernet in embedded systems 22

Figure 3.2: Linux kernel Architecture [3]

From the discussions above, Linux kernel can be described as a Monolithic, true pre-

emptive multitasking kernel with support for virtual memory. Devices are handled by

device drivers completely embedded in the kernel with on demand loading and manual

loading of loadable kernel modules. The various modules involved in the Linux kernel

are presented in the following figure 3.2.

3.2.2 System calls

Linux system calls are a way for the user space applications to invoke functions in the

Linux kernel. When a system call is invoked the kernel functions are not invoked directly

but the system call invokes a software interrupt which looks up the system call table and

executes the respective kernel function for the system call. The system call in Linux can



Synchronized real time audio streaming over ethernet in embedded systems 23

be invoked by two ways, one is through the syscall() library function where the system

call number has to be passed along with the required arguments. This library function

stores all the current registers, loads the arguments and executes the kernel function.

Upon completion the syscall() returns either 0 in success or -1 in case of failure with the

failure reason is returned in the errno global variable.

3.2.3 Device drivers

Device drivers are software components which resides inside kernel and manage a hard-

ware component. It presents a common interface for the user to operate on that device

by abstracting the device into the standard forms which are defined as follows

• Character devices

– Character devices exposes the device as a file which can be opened and closed

as a normal file. The contents of the file can be read or written as a stream

of bytes

– The difference between a normal file and character device is that the former

has the ability to seek back and forth the file, while character device driver

are not able to seek through the file, just read and write at the end of the file

sequentially

– Many of the character devices are accessible in the /dev/ path of the Linux

file system

• Block devices

– Block devices are similar to character devices, but instead of providing data

as a stream of bytes block device provide data always as a fixed block

– Although block device can only handle a block of data at a time the Linux

kernel provides the possibility to read and write arbitrary length of data just

like character devices

– So the only difference between character and block devices are only inside the

kernel on how the kernel handles the device drivers

• Network devices



Synchronized real time audio streaming over ethernet in embedded systems 24

– Each network device is exposed as a network interface which are capable of

sending and receiving data packets

– As network devices are not stream oriented there are no file system entries

for network devices

– Network devices are nonetheless are identified by a unique identifier in the

Linux system which can be used to send or receive data packets to the device.

Although these are the major device driver models inside the Linux system, there are also

some minor device driver models available. And also developers can always implement

their own device driver model and interfaces for their proprietary devices as required.

This is required for some special purpose hardware when having an unique interface

provides a more optimized way of using the device than using the standard model of

device drivers.

Some important points to note for a Linux device driver development can be summarized

as follows,

• Traditionally all the Linux device driver development is implemented using C pro-

gramming language. Although any other programming language (like C++) could

technically be used, it is actively discouraged to try such approaches as they could

potentially lead to a cluttered sub-par kernel

• The starting point for the device driver development is to implement some pre-

defined set of device and driver management functions such as init, exit, probe,

remove etc... and then register these functions to the kernel along with the infor-

mation regarding the driver and it’s features and limitations

• The kernel will use this information to load, unload the driver as required i.e. when

the device is detected or removed etc...

• After the basic functions are implemented based on the device driver mode chosen

the required set of function such as open, read, write, ioctl, close etc... has to be

implemented and registered with the kernel

• The kernel will use these functions when the associate file is opened by a user

mode application and used through the read, write file operations system calls



Synchronized real time audio streaming over ethernet in embedded systems 25

• Once the development of the source code is completed, the newly developed has

to be integrated into the kernel build system by specifying the sources needed to

build the kernel in Makefile and loading options such as included, loaded or not

enabled in the configuration file Kconfig

3.2.4 Networking stack

The networking stack in the Linux kernel comprises of the following drivers or software

components such as network device drivers, kernel core networking module, separate

modules for various networking protocols etc... All these software modules interface

each other with a common data structure called the socket buffer. This socket buffer

contains all the information required to send or receive a packet data (which is also

contained inside the socket buffer). For transmitting or receiving any data through a

network device a socket has to be created and based on the protocol has to be used

and any other special features required the socket options has to be set and then the

socket can be used to send packet data or receive packets from the network through the

network device. There are several options available that can be set on a socket to enable

or disable some special features.

As explained in the section 3.1.1, the Ethernet time stamping is supported by the TI

AM335x processor. As this time stamping options is need to used the development for

the gPTP protocol in AVB stack there are some software interfaces available through

the kernel to operate this feature of the Ethernet module of the microprocessor. This

feature is implemented by the CPSW Ethernet driver for the TI AM335x processor. As

the user space application doesn’t directly use the Ethernet driver, but use the kernel

functions related to sockets. So the kernel functions has to provide an interface to use the

Ethernet time stamping from the user mode processes. As the Ethernet time stamping

options can be different in different implementations (software or hardware) the kernel

socket API provides a common interface to handle the Ethernet time stamping. Among

the several socket options available to configure the Ethernet time stamping some of the

important options are listed below.



Synchronized real time audio streaming over ethernet in embedded systems 26

• SO TIMESTAMPING - This socket option enables the generation of timestamping

for both transmission and reception sockets. Also supports generation of time

stamps for stream scokets.

• SOF TIMESTAMPING R(T)X HARDWARE - This socket option enables the

generation of hardware time stamping where supported

• SOF TIMESTAMPING RAW HARDWARE - This socket option enables the re-

porting of the generated hardware time stamps, this should not be confused with

the previous option where only the generation is configured. This option enables

the delivery of the generated hardware time stamps to the caller

The generated time stamps are usually returned with the ancillary data feature in the

received data packets. For transmitted packets the time stamps are returned along with

the transmitted packet in the error queue of the socket.

3.2.5 ALSA Framework

Advanced Linux Sound Architecture (ALSA) is a software framework that is part of the

Linux kernel and provides a simple Application Programming Interface (API) for all the

audio device drivers. Apart from the audio device drivers ALSA also provides a user

space library which further simplifies the exposed API and thus simplifying the design

for any high level audio application development. This interface include simple calls

such as snd pcm open, snd pcm close, snd pcm read, snd pcm write and snd pcm ioctl

etc... through which the audio PCM data can be transmitted or received via the desired

device. ALSA also provides software plugins that provide some extra functionality such

as volume control, mixing, re-sampling etc...

3.3 Audio Video Bridging

The AVB standard consists of a set of protocols defined by IEEE 802.1 Audio/Video

Bridging Task Group to allow real time media transmission over Ethernet. AVB pro-

vides reserved Ethernet bandwidth for deterministic transmission.The purpose of AVB

is to provide time synchronized reliable data through IEEE 802(Ethernet) networks.



Synchronized real time audio streaming over ethernet in embedded systems 27

AVB consists of

• IEEE 802.1BA: Audio Video Bridging (AVB) Systems[19]

• IEEE 802.1AS: Timing and Synchronization for Time-Sensitive Applications (gPTP)[4]

• IEEE 802.1Qat: Stream Reservation Protocol (SRP)[5]

• IEEE 802.1Qav: Forwarding and Queuing for Time-Sensitive Streams (FQTSS).[20]

• IEEE Std 1722.1: AVB Discovery, Enumeration, Connection management and

Control (AVDECC)[6]

• IEEE 1722: Audio Video Transfer Protocol (AVTP)[21]

3.3.1 Generalized Precision Time Protocol(gPTP)

The Generalized Precision Time Protocol [4] is used for the synchronization of the media

clocks in all the Ethernet ports in a Local or a Virtual Local Area Network (V-LAN).

Although through the existing protocols such as Network Time Protocol (NTP) it is

still possible to synchronize the clocks of various devices in the network, because of

propagation delays in the network the time advertised by the time server will always

be outdated by some nano-seconds to some milli-seconds depending on the position

of the receiving node in relation to the time server. This leads to different levels of

synchronization to different devices as each device receives the time at a slightly different

time and also the setting of the time by the end devices are not standardized and so the

devices are free to apply the time whenever and however they want. The end result is

a network with the devices that are synchronized so some milli-seconds precision.

This level of precision is sufficient for most normal user applications but for media

streaming and most professional industrial systems much more rigorous synchronization

is required. For example for a 48 kHz audio streaming, a single sample duration is

20.83µs, so the time synchronization between the transmitter of this audio stream an

the receiver of this audio stream should be less than 20µs for the streaming has to result

in synchronized playback.



Synchronized real time audio streaming over ethernet in embedded systems 28

The main drawback of the existing time synchronization protocols is that they do not

account for the propagation delay for the time announcement message to propagate

through the network from the time server to the individual time slaves. The Precision

Time Protocol aims to solve this problem by accurately measuring the propagation

delay between every hop in the network and using this value to correct the advertised

time at every hop. This way when the advertised time reaches a device the time is

correctly synchronized to the time advertised originally as it is corrected to account for

the propagation delay. The basic operation and the modules in the gPTP as described

below

• Peer delay measurement

– The peer delay measurement is used for measuring the propagation delay

between two participating devices

– The delay is measured by sending delay measurement request and receiving

the response

– The ingress and egress times of both the request and response are time

stamped and returned to the initiator of the delay measurement

– From these four set of time stamp values the average propagation delay

– This peer delay measurement is executed on all ports in the system for ex-

ample the routers in the network the peer delay measurement is executed on

all the ports to which supported



Synchronized real time audio streaming over ethernet in embedded systems 29

Figure 3.3: gPTP - Peer delay measurement [4]

• Best Master Selection

– The master device which is responsible for announcing the time is selected

dynamically based on the advertised capabilities of the devices

– The device which has the most stable and accurate clock is normally selected

as the master device

– But the master device selection can also be overridden to chose a particular

device by assigning user defined ranks for all the system in the devices such

that the master device with a higher user set priority is chosen as the master

device

– The best master selection is a distributed protocol where the decision for

which device should be master is individually decided by all the devices in

the network

– Each device reports the clock class, accuracy, user set clock priority and other

parameters

– On reception of this announcement message each device compares it with

the parameters of the current selected grand master device and if the new

parameters are better the current the new device is selected as the master

• Time Synchronization



Synchronized real time audio streaming over ethernet in embedded systems 30

– Time synchronization is achieved by the master device sending sync mes-

sages periodically and every other device correcting their clocks to match the

received time

– For routers they update the received time sync messages and add the prop-

agation delay for the port where the sync messages are received and then

forward the sync messages to all other ports

An Ethernet frame for the gPTP has a common header as specified in Table 3.1 followed

a variable length gPTP body, the contents of which are specified separately for each

gPTP message type and the frame ends with an optional suffix as required. All the

gPTP messages have an Ethertype value of 0x88F7 and are sent to the broadcast MAC

address 01-80-C2-00-00-0E.

Offset 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 Transport Specific Message Type Reserved PTP version

2 Message Length

4 Domain Number Reserved

6 Flags

8 Correction field

16 Reserved

20
Source Port Identity

30 Sequence ID

32 Control Field Log Message Interval

Table 3.1: gPTP Common Message Header

A brief explanation for the various parameters in the gPTP header are specified below

• Transport specific parameter is a 4-bit value indication which transport is used

to transport the gPTP message. For Ethernet the option L2 is used

• Message Type is also a 4 bit value which specifies the current gPTP command.

More information and possible values for this parameter is explained in Table 3.2



Synchronized real time audio streaming over ethernet in embedded systems 31

• PTP Version is a 4 bit vlaue indicating the version of the gPTP used

• Message Length specifies the length of the gPTP message including the header,

data and any optional suffix and exlcuding any padding bytes at the end of the

frame. It specifies the length in terms of the number of bytes required

• Domain Number refers to the domain in which the gPTP is executing

• Flags is a bitfield value indication several parameters of the current messages

• Correction Field specified the correction value to be applied in nano seconds

• Source Port Identity is an unique identifier which is used to identity the currrent

device in the network

• Sequence ID is a running count of indicator to find the sequences of the messages.

This value increases for all the request messages and the response messages will

use the same sequence numbers as the request messages

• Control Field is a deprecated value depending on the message type specified in

the current command

• Log Message Interval specifies the log value of the timeout value for the repe-

tition of the specific message type

The various message types, their numeric value, the PTP body for the message type

etc... are documented in the following table.

gPTP Message Type Description and parameters

Sync 0x00

â The sync messages are sent by the grand master device in periodical in-

tervals

â The sync messages contain no more additional data in the gPTP body and

is used only as a trigger to synchronize the time

â The sync message is always followed up by the Follow Up message



Synchronized real time audio streaming over ethernet in embedded systems 32

Follow Up 0x08

â The Follow Up messages are also sent out by the grand master device

immediately after the sync messages are sent

â They contain the precise origin time stamp which is the egress time stamp

for the sync messages at the port measurement plane of the grand master

â These messages are also forwarded by the routers after correcting the time

stamp for the measured propagation delay

â When the other devices in the network receive the Follow Up message they

use the time stamp in the message and the propagation delay measured to

correct it’s internal clock

Pdelay Req 0x02

â The Pdelay Req command initiates the peer delay measurement sequence

â The peer delay measurement initiator device, when sending the Pde-

lay Req command records the command egress time stamp (t1)

â When a device in the network receives this message it records the ingress

time stamp (t2) of this message

â The Pdelay Resp command is sent as a response along with the Pdelay Req

ingress time stamp

Pdelay Resp 0x03

â The Pdelay Resp command is sent in response to a Pdelay Req command

reception

â When sending the command the peer delay measurement responder records

the egress time stamp (t3) for the command

â When the peer delay measurement initiator receives the Pdelay Resp com-

mand, it records the ingress time stamp (t4)

â It also parses the Pdelay Resp command the copies the ingress time of the

Pdelay Req (t2) received by the peer delay measurement responder



Synchronized real time audio streaming over ethernet in embedded systems 33

Pdelay Resp Follow Up 0x0A

â The peer delay measurement responder after sending the Pdelay Resp com-

mand sends the Pdelay Resp Follow Up command

â The Pdelay Resp egress time stamp (t3) recorded is packed into this com-

mand and sent

â The peer delay measurement initiator upon receiving the command parses

the command and extracts the Pdelay Resp egress time stamp (t3)

â At this point the peer delay measurement initiator has all the four time

stamp values (t1, t2, t3, t4)

â Using the four time stamp values the average propagation delay is calcu-

lated as ((t4 - t1) + (t2 - t3)) / 2

Announce 0x0B

â Announce messages are sent by every device that are grand master capable

â Announce messages are sent only when the device has not decided upon a

grand master or when it is the grand master

â Announce messages advertise the capabilities of it’s clock source and other

user configurable parameters that sets the clock priorities

â When a grand master capable device receives an announce message with

a better clock or a higher priority than it’s parameters it stops sending

announce messages and records the device with better parameters as grand

master

Table 3.2: gPTP Message Types

3.3.2 Multiple Stream Reservation Protocol (MSRP)

The Stream Reservation Protocol is used to reserve the required resources in all the

devices of the network between the stream source and the stream sink so that the quality

of service for the AVB streams are assured. There are three kind of devices involved in

the Stream Reservation Protocol as listed below

â Talkers are end stations that are sources for media stream data



Synchronized real time audio streaming over ethernet in embedded systems 34

â Listeners are end stations that are sinks for media streams

â Bridges are the routing devices that are in the path between the Talkers and

Listeners are defined as the bridges in the system

Stream Reservation Protocol operation sequence comprises of the following steps

Figure 3.4: Stream Reservation Protocol [5]

• The Talkers in the system declare attributes that define the characteristics of the

streams they provide.

• These declarations are evaluated by the bridges that receive them and if the bridge

can allocate the requested resources for the declared stream the declarations are

forwarded to the next device in the network

• If the bridges are unable to allocate sufficient resources for the requested streams

they send back a negative response to the talker without further propagating the

original talker declarations

• When the talker declarations reach a Listener end point device, the Listener eval-

uates the declarations and if it is interested in the provided streams, they send a

Listener advertisement to register for the stream



Synchronized real time audio streaming over ethernet in embedded systems 35

• This listener advertisement is also propagated through all the bridges in between

the Listener and the Talker in the network

• There is a possibility that there are multiple Listeners interested in a stream by a

Talker, in that case the Talker will receive multiple Talker advertisements for the

stream

• If the talker receives at least one successful Listener advertisement, then the stream

reservation is successful and the Talker can start the media streaming

An Ethernet frame for the SRP has a common header as specified in Table 3.3 followed

a variable length body, the contents of which are specified separately for each SRP mes-

sage type and the frame ends with an 2 byte end marker (which is set to zero). All the

SRP messages have an Ethertype value of 0x22EA and are sent to the broadcast MAC

address 01-80-C2-00-00-20.

Offset 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 Protocol Version Attribute Type

2 Attribute Length Attribute List Length

4 Attribute List Length Vector Attribute

6
Vector Attribute

(n-4) End Marker End Marker

Table 3.3: SRP Common Message Format

A brief explanation for the various parameters in the SRP header are specified below

• Protocol Version indicates the version of the SRP protocol used

• Attribute Type indicates which attribute is being defined in the message

• Attribute Length The length of the whole message including the header and

body

• Attribute List Length specifies the length of the attribute list (body) of the

message



Synchronized real time audio streaming over ethernet in embedded systems 36

• Vector attribute defines the attributes for the particular attribute type

• End Markers mark the end of the attribute types and the end of the message

The various different attribute types along with their numeric values, their different

parameters and uses are described in the table below

SRP Message Type Description and parameters

Talker Advertise 0x01

â The attribute type Talker Advertise is used to advertise the stream pa-

rameters from the talker

â The parameters include the stream id, the destination MAC and VLAN

address, Maximum number of frames, stream priority and rank

Talker Failed 0x01
â The talker failed vector is used to indicate the talker advertisements that

are unable to be accepted because of resource restrictions in any of the

bridges in the stream path

Listener Advertise 0x02

â The listener advertisement attribute type is used by the listeners to indi-

cate interest in the advertised streams

â The listener advertisements carry only the stream id as a parameter for

the response

â Apart from the stream id the listener advertisement also contains the sta-

tus of the command which can be either one of the following values

â Ready indicates that for all the Listeners requested t to attach to the

stream sufficient resources are available

â Ready failed indicated that there are more than one Listeners requested

to attached to the stream, but not all requests can be reserved

â Asking failed indicates that none of the Listener advertisements that re-

quested to attach to the stream was successfully because of missing re-

sources

Domain 0x03 â The domain vector identifies the domain boundary within which the

Stream Reservations are valid

Table 3.4: SRP Attribute Types



Synchronized real time audio streaming over ethernet in embedded systems 37

3.3.3 Forwarding and Queuing for Time-Sensitive Streams (FQTSS)

The FQTSS [20] protocol is used to enhance the forwarding and queuing behavior of

end stations and bridges for time sensitive streams, so that the data for the time sen-

sitive streams are not buffered too long so that they meet their time constraints when

transmitted from one end station to another. To meet these requirements the following

information are required.

• The stream reservation protocol boundaries are known so that the bridges know

which traffic to prioritize and which not.

• The actual bandwidth requirement for the stream and the association of the band-

width to the size for a single frame in the stream transmission.

• The maximum bandwidth that is available for the outbound queue at each of the

ports in the bridge and the maximum bandwidth already reserved in the outbound

queue of the port.

• The priority of the audio frame transmitted for each traffic class so that the credit

based traffic shaper can order the priorities for the frames in the outbound queue.

During operation the talker end station has to transmit data streams such that the

bridges can associate the data frame priorities to the respective traffic classes. This

information is used in the credit based traffic shaper in the bridges to prioritize the

required traffic so that they meet the time constraints. The only requirement from the

listener end station is to be capable of buffering the amount of data required to reduce

any jitter in the transmission.

3.3.4 AVB Discovery, Enumeration, Connection management and Con-

trol (AVDECC)

The AVDECC [21] protocol is a comprehensive protocol used to manage several aspects

of the AVB network and helps devices in the network to know the availability and



Synchronized real time audio streaming over ethernet in embedded systems 38

capabilities of the other devices and manage them as required. The main operations of

the AVDECC protocol are as followed,

â Device Discovery functionality enables the devices in the AVB network to know

about the availability of other devices in the network, when they are ready, when

they are departing etc...

â Enumeration functionality enables a device to learn about the various features

and capabilities of any other device in the current AVB network

â Connection management and control functionality enables a controller device

to connect streams between talkers and listeners and then control the various

features of the devices to control the streaming

The AVDECC protocol uses the AVTP control command format to define the various

command and responses. The format of the common command header format is defined

as follows

Offset 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 sub type sv ver msg type

2 status Data length

4 Stream Id

Table 3.5: AVDECC Common Header

All the functionalities in the AVDECC protocols uses the common header above which

is derived from the AVTP common control header. The parameters in the AVDECC

Common Header are described in details below

â Subtype is a 8 bit value which indicates which functionality this command belongs

to. The following options are possible

– 0xFA - AVDECC Discovery Protocol (ADP)

– 0xFB - AVDECC Enumeration an Control Protocol (AECP)



Synchronized real time audio streaming over ethernet in embedded systems 39

– 0xFC - AVDECC Connection Management Protocol (ACMP)

â Stream Valid is a single bit value that can be ignored and set to 0

â Version is a 3 bits value indicating the version of the protocol used

â Message Type is a 4 bit value indicating the type of the message received

â Status is a 5 bit value used to report the result of the requested operation

â Data length indicates the length of the command excluding the Ethernet header

â Entity Id identifies the entity to which this command is directed to

An AVDECC entity could choose to implement four different possible roles of operation.

These roles are defined briefly below,

â AVDECC Controller is an entity role where the entity initiates commands to

other entities to create and manage streams

â AVDECC Talker is an entity role where the entity acts as a source for media

streams.

â AVDECC Listener is an entity role where the entity acts as a sink for media

streams.

â AVDECC responder is an entity role where the entity has no specific operation,

but just responds to any incoming AVDECC commands.

3.3.4.1 AVDECC Discovery Protocol

AVDECC device discovery is a process which follows the AVDECC Discovery Protocol

(ADP), through which AVDECC entities in the network learn about the other devices

in the network and when they are available and when they are departing. The ADP

uses the common header format defined in Table 3.5. The body for the ADP command

is specified through the ADP data unit (ADPDU) defined as follows



Synchronized real time audio streaming over ethernet in embedded systems 40

Offset 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 Entity Model Id

8 Entity Capabilities

12 Talker Stream Sources Talker Capabilities

16 Listener Stream Sinks Listener Capabilities

20 Controller Capabilities

24 Available index

28 gPTP Grand master Id

36 gPTP Domain No Reserved

40 Identify Control Index Interface Index

44 Association Id

40 Reserved

Table 3.6: ADP Data Unit

Via the ADPDU given above an AVDECC entity can advertise it’s presence in the

network along with a basic set of it’s features. It defines the version of the device

firmware via the Entity Model Id and the features of the various aspects or roles of

the entity via the various capabilities fields. Also it provides the gPTP grand master

Id and domain number so that the network to which this entity belongs can be clearly

understood. Apart from these important parameters there are also some feature specific

parameters are also available. Based on the message type field in the AVTPDU common

header defined in Table 3.5 there are three different ADP command which are listed

below

â Entity Available (0x00) to indicate that the entity is available in the network

and ready for configuration and streaming

â Entity Departing (0x01) to indicate that the entity is now not in operation and

will soon be removed from the system

â Entity Discover (0x02) to trigger other entities (all entities when the requested

entity id is 0 or the specific entity requested in the entity id) in the network to

re-advertise themselves with the Entity Available command

The ADP commands contain the subtype as 0xFA, EtherType type as 0x22F0 and are

transmitted to the multicast MAC address 91-e0-f0-01-00-00.



Synchronized real time audio streaming over ethernet in embedded systems 41

3.3.4.2 AVDECC Enumeration and Control Protocol

The AVDECC Enumeration and Control Protocol (AECP) provides two operations of

which the first is to enumerate and discover the various capabilities, formats and controls

of the AVDECC entity. The second is to control or modify these capabilities and formats

to configure the entity to an operable state.

The AVDECC entity model describes the internal structure of the entity as a hierarchical

collection of objects with each object specifying the details of it’s parameters and the

list of it’s children and the hierarchical level where the object belong. An overview of

the entity model is described in Figure 3.5 and the major objects are described briefly

below.

Figure 3.5: AVDECC Entity Model [6]

â The entity descriptor is the root level descriptor that defines the basic model and

capabilities of the entity

â The configuration descriptor defines the one more configurations the entity sup-

ports and it further defines the other descriptors supported in each configuration.

For example if an entity is capable of sourcing 8 channels of 48 KHz audio but

only 2 channels of 192 KHz audio then it would present 2 different configurations

for these two modes of operation.

â The stream input or output descriptors define the characteristics of the streams

sourced and sinked in the entity. Here the range of parameter values of the audio



Synchronized real time audio streaming over ethernet in embedded systems 42

or video streams such as resolution, bit depth, number of channels, sampling rate

etc... are defined.

â Further descriptors for the AVDECC entity model include the Jack, Clock domain,

Sensor etc... descriptors each defined separately for each configuration supported

by the entity

The AECP uses several protocol data units based on the common AECPDU fomrat

defined below

Offset 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 Controller Entity Id

8 Sequence Id

12 Payload data

(N-4)

Table 3.7: AECP Data Unit

Here the Controller Entity Id specifies the AVDECC controller which initiates this re-

quest and the sequence id is used to track the multitude of requests and to correctly

match a command with a response.

The two main commands used for the enumeration of the entity model are AEM COMMAND

and AEM RESPONSE which are used to query and return the descriptors of individual

entity objects one by one.

The AECP commands contain the subtype as 0xFB, EtherType type as 0x22F0 and are

transmitted to the unicast MAC address of the entity requested and the responses are

sent back unicast to the MAC address of the initiator MAC address.

3.3.4.3 AVDECC Connection Management Protocol

The AVDECC Connection Management Protocol (ACMP) manages the stream connec-

tions in the AVB network by connecting and removing stream connections between the

stream sources and the stream sinks in the system. The ACMP uses the common ACMP

data unit (ACMPDU) for all the commands and responses, the structure of ACMPDU

is defined below



Synchronized real time audio streaming over ethernet in embedded systems 43

Offset 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 Controller Entity Id

8 Talker Entity Id

16 Listener Entity Id

24 Talker unique id Listener unique id

28 Stream destination MAC

32 Connection count

36 Sequence Id Flags

32 Stream VLAN Id Reserved

Table 3.8: ACMP Data Unit

â The controller entity id identifies the controller device that is managing this con-

nection

â The Talker entity id identifies the talker entity which sources the stream

â The listener entity id identifies the listener which provides a sink for the stream

â The talker and listener unique ids identify the particular stream from the several

possible stream sources available

â The stream destination MAC specifies the multicast MAC address to which the

streaming data would be broadcast

â The connection count counts the number of listeners already attached to the stream

â The sequence id is used to match the responses with the commands

â The stream VLAN id indicates the VLAN id of the network where the stream is

being streamed

The ACMP uses the following set of commands along with the ACMPDU described

above to start and stop streaming between the entities.

Value Message Type Description

0 CONNECT TX COMMAND
Command to connect the talker to the

stream



Synchronized real time audio streaming over ethernet in embedded systems 44

1 CONNECT TX RESPONSE
Response from the talker for the

connect request

2 DISCONNECT TX COMMAND
Command to disconnect the talker

from the stream

3 DISCONNECT TX RESPONSE
Response from the talker for the

disconnect command

4 GET TX STATE COMMAND
Request to get the current state of the

talker

5 GET TX STATE RESPONSE
Response from the talker for the

current state request

6 CONNECT RX COMMAND
Command to connect the listener to a

stream

7 CONNECT RX RESPONSE
Response from the listener for the

connect command

8 DISCONNECT RX COMMAND
Command to disconnect the listener

from the stream

9 DISCONNECT RX RESPONSE
Response from the listener for the

disconnect command

10 GET RX STATE COMMAND
Request to get the current state of the

listener

11 GET RX STATE RESPONSE
Response for the request to ge the

current state of the listener

Table 3.9: ACMP Message Types

The ACMP uses the above commands to setup a streaming matrix and start the

streaming. Based on the sequence of commands used there are four different connection

modes defined by the ACMP. The four modes of operation are defined in detail below

1. Fast Connect

- Fast connect mode is used when the Listener entity has a saved state on

boot-up.



Synchronized real time audio streaming over ethernet in embedded systems 45

- The Listener entity tries to connect the last stream source identified by the

Entity and unique Id of the Talker entity.

- The Listener sends a CONNECT TX COMMAND towards the last saved

Talker entity.

- If the Talker is present and sends a CONNECT TX RESPONSE, the con-

nection is established and streaming starts.

- If there is no reply the Listener waits for the Talker to be available again in

the network by listening to the ADP advertise command.

- When the Talker is available again (identified through ADP), the Listener

again sends the CONNECT TX COMMAND and after the Talker responds

directly proceeds with the MSRP and streaming.

- If the Talker is changed in the network the Controller can delete the saved

mode by sending DISCONNECT RX COMMAND

2. Fast Disconnect

- Fast disconnect occurs when the Listener is executing a clean power-off when

the stream is still active.

- Before the power-off the Listener device remembers the connect Talker entity

identity and sends a DISCONNECT TX COMMAND towards the Talker.

3. Controller Connect

- Controller connect mode is normally used to setup a new connection for the

first time.

- The controller first sends a CONNECT RX COMMAND towards the Lis-

tener, then the Listener will send a CONNECT TX COMMAND towards

the Talker.

- When the Listener receives the CONNECT TX RESPONSE it can start the

MSRP and then the streaming.

4. Controller Disconnect

- Controller Disconnect is the normal mode of operation for terminating a

stream for a established connection.



Synchronized real time audio streaming over ethernet in embedded systems 46

- For the controller disconnect, the controller sends a DISCONNECT RX COMMAND

towards the talker, which in turn removes the saved state and sends a DIS-

CONNECT TX COMMAND towards the Talker.

- When the Talker responds with a DISCONNECT TX RESPONSE for the

disconnection request the connection terminated.

The ADP commands contain the subtype as 0xFC, EtherType type as 0x22F0 and are

transmitted to the multicast MAC address 91-e0-f0-01-00-00.

3.3.5 Audio Video Transfer Protocol (AVTP)

The Audio Video Transfer Protocol (AVTP) [6] enables time synchronized transfer of

audio, video and control data in a Audio Video Bridging (AVB) or Time Synchronized

Networks (TSN). AVTP uses the AVB protocols such as Generalized Precision Time Pro-

tocol (gPTP), Multiple Stream Reservation Protocol (MSRP) and Framing and Queuing

Enhancements for Time Sensitive Streams (FQTSS) etc... AVTP specifies the formats

for audio video transfer along with the required information from the protocols such as

gPTP, MSRP to reproduce the audio video signals exactly with time synchronization

in the Listeners. AVTP protocol specifies one Talker device streaming data for one or

more Listener devices. AVTP data is usually encapsulated in IEEE 802.3 Ethernet net-

works and it is also possible to encapsulate it in IEEE 802.11 wifi networks and inside

IP protocols.

AVTP uses the concept of presentation time to achieve time synchronization between the

Talkers and Listeners. The presentation time is defined as the gPTP time specified in

nanoseconds at which point the audio video samples are to be presented at the Listener

to the user. Even with the enhancements for a standard quality of service for AVTP

streaming, it is still possible for the individual packets in the stream arrive at a variable

time points. The presentation time should be chosen such that to smooth out these

variations and at the same time low enough to be considered real time.

The AVTP transfers the data as the AVTP data unit (AVTPDU) of which there are

three different types. The streaming data uses the AVTPDU stream header, the control

applications uses the AVTPDU control format and the rest of the applications use the



Synchronized real time audio streaming over ethernet in embedded systems 47

AVTPDU alternate header format. The AVTPDU streaming header format is specified

below and it’s various parameters are discussed in detail

Offset 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 Subtype sv ver mr fsd tv seqno Format specific 1 tu

4 Stream Id

12 avtp time stamp

16 format specific data 2

20 stream data length format specific data 3

24 Stream data payload

Table 3.10: AVTP Data Unit

- The 8 bit subtype field specifies the actual media data present along with it’s

encoding type such as IEEE 61883, AVTP Audio Format (AAF), Compressed

Video Format (CVF) etc...

- The 1 bit stream valid (sv) field indicates if the stream id present contains a valid

stream id or not.

- The version information specifies the protocol version of the AVTP protocol as a

3 bit value.

- The 1 bit media clock restart (mr) field indicates that there is a media source clock

change at the Talker

- The 1 bit Time stamp valid (tv) field indicates that if the avtp time stamp field

contins a valid time stamp.

- The sequence number field is a single octet filed of a running count of the AVT-

PDUs. It is incremented by the Talker and used by the Listener to identify lost

frames.

- The single bit time stamp uncertain field indicates that the time stamp specified

is not accurate and Listener has to handle the uncertainty in time media clocks

and prevent any unwanted disturbances.

- The stream id field specifies the unique identifier that identifies the stream. It

is composed of the 48 bit MAC address of the stream source entity and a 16 bit

unique identifier.



Synchronized real time audio streaming over ethernet in embedded systems 48

- The AVTP time stamp specifies the nanoseconds value of the gPTP synchronized

time. The time stamp is calculated from the gPTP time using the following formula

ts = ((sec ∗ 109) + (ns))mod232 where sec is the seconds part and the ns is the

nano second part of the gPTP time.

- Stream data length contains the length of the stream data paylod field which is

the size of the entire AVTPDU minus the stream header.

- The Stream data payload field contains the actual media data to be transferred.

The format of this filed is subtype specific and it’s length is generally limited by

the maximum size of a frmae in the underlying transport protocol.

- The three format specific fields are individually defined for every subtype and carry

the stream specific parameters

AVTP Audio Format (AAF) encapsulation is a audio only format used to stream audio as

an uncompressed stream. The header for the AVTP Audio Format (AAF) encapsulation

is as follows

Offset 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 Subtype sv ver mr rsv tv seqno rsv tu

4 Stream Id

12 avtp time stamp

16 format nsr rsv channels per frame bit depth

20 stream data length rsv sp evt reserved

24 Stream data payload

Table 3.11: AVTP Data Unit - AAF

The AVTPDU for the AAF encapsulation uses the same stream header common for all

the AVTPDUs. Further it defines some more parameters specific to the AAF encapsu-

lation which are described below.

- The format field specifies which kind of data format does the audio samples have.

Two major kinds are defined namely PCM and AES3.

- The nominal sampling rate filed specifies the sampling rate of the audio stream

which possible standard values from 8 kHz to 192 kHz.



Synchronized real time audio streaming over ethernet in embedded systems 49

- The channels per frame field indicates the number of channel samples present in

each frame.

- The bit depth specifies the number of bits used to encode each audio sample.

- The payload data field contains the actual audio samples packed according the

parameters specified above.

For example a 16 bit PCM with 8 channel audio frame is packed as follows

Offset 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 Sample 1 of Channel 1 Sample 1 of Channel 2

4 Sample 1 of Channel 3 Sample 1 of Channel 4

8 Sample 1 of Channel 5 Sample 1 of Channel 6

12 Sample 1 of Channel 7 Sample 1 of Channel 8

16 Sample 2 of Channel 1 Sample 2 of Channel 2

20 Sample 2 of Channel 3 Sample 2 of Channel 4

24 Sample 2 of Channel 5 Sample 2 of Channel 6

28 Sample 2 of Channel 7 Sample 2 of Channel 8

32 Sample 3 of Channel 1 Sample 3 of Channel 2

36 Sample 3 of Channel 3 Sample 3 of Channel 4

40 Sample 3 of Channel 5 Sample 3 of Channel 6

44 Sample 3 of Channel 7 Sample 3 of Channel 8

Table 3.12: AAF 8 channel 16 bit PCM payload



Chapter 4

Implementation

The proposed AVB solution uses the BeagleBone Black or the BeagleBoard x15 as

development platforms. No additional hardware is required since the BeagleBoards

have an inbuilt Ethernet port with hardware time stamping support from the Texas

Instruments AM335x Sitara processors. It also can be expanded by audio capes for

analog or any traditional audio in and out. In software front the Debian distribution

with a Linux kernel modified for the BeagleBone Black and BeagleBoard x15 is used.

The design of the architecture and the details of the implementation are explained in

detail in the following sections

4.1 Design

The general software architecture of the purposed AVB stack in the BeagleBoard Debian

environment is described in the figure 4.1. It details the structure of the various modules

in the implementation along with their interconnections explaining the data and control

flow between them. The implementation is based on the Debian distribution based on

a Linux kernel where there are two modes of software operation.

Ü The first is the kernel mode operation where the software executes in a privileged

environment with full access to all the resource in the system. But development

of software for kernel mode applications is complicated, not always backwards

compatible and any issues in the kernel mode software can easily bring down the

entire system.

50



Synchronized real time audio streaming over ethernet in embedded systems 51

Ü The second is the user mode operation where development is simple and portable

but lacks several privileges for access to resources such as i/o blocks system memory

etc...

The AVB solution described here has software modules implemented both in the user

mode and also the kernel mode. The various modules and their mode of operation along

with the arguments for the chosen mode of operation are described in detail. In the figure

4.1 the green coloured blocks are the modules developed under this implementation and

the gray coloured modules are software modules already available in the default debian

distribution for the BeagleBone Black and BeagleBoard x15 systems.

The individual development modules, developed as part of this project are listed below

with a sort summary with the detail explanation of the design and implementation

details of these modules are provided in the further sub sections.

1. gPTP Daemon - A Linux Daemon implementing the generalized precision time

protocol for time synchronization between nodes.

2. ALSA AVB Driver - A Linux kernel virtual audio driver for the ALSA framework

implementing the AVTP, AVDECC and MSRP protocols for the AVB Stack for a

real time synchronized audio streaming.

3. A Test Application which uses the ALSA AVB driver to demonstrate a real time

synchronized audio streaming.



Synchronized real time audio streaming over ethernet in embedded systems 52

gPTP Daemon (gPTPd)Test Application / Audio Applications

ALSA User Library

User Mode

Network Framework

ALSA Framework
Kernel Mode

AVB Driver

AVTP

AVDECC

MSRP/MVRP

Kernel

Modules

under

development

Modules

of Linux

Figure 4.1: Software Architecture

4.2 gPTP Daemon

A Daemon is a software program that runs in the background without any possibility

for user input and with no feedback to user of its operations. Normally the daemon

programs are identified (in Linux systems) by a letter d at the end of the program



Synchronized real time audio streaming over ethernet in embedded systems 53

name such as httpd, dhcpd, syslogd for responding to HTTP protocol requests, manage

DHCP connections and log the system events in a log respectively. Normally these

daemon provide a particular service which is required for the entire life time of the

system but with no input from the user. The same functionalists are known as system

extensions or services in other operating systems. Although the implementation details

may differ between different operating systems, the main objective and functionalities

of the daemons are the same.

In Linux systems a daemon is created by the following steps programmatically. When

a program starts it forks into a different process and then immediately exits the main

process. Now the forked process is adapted by the init process of the Linux and now

runs in the background with it’s standard input output file descriptors closed and so no

further input output possible.

The gPTP daemon is such a daemon implemented to execute the various protocols in

the gPTP specification such as peer delay measurement, best master selection and time

synchronization as described in 3.3.1. The implementation of the gPTP daemon is done

completely done with ’C’ programming with the individual algorithms executed as state

machines. State machine design pattern implements a state machine description of an

algorithm. State machines describe the operation of an algorithm by defining a number

of states of operation and a list of events which trigger specific operation and optionally

might trigger a state transition to a different state.[16]

Before describing the individual state machine and their operations, the main flow of

operation of the gPTP daemon is illustrated in the diagram 4.2. The main functions in

the gPTP flow diagram are described in detail below.



Synchronized real time audio streaming over ethernet in embedded systems 54

gPTPd

gptp init

gptp setup

gptp start

Enable state machines

gptp timers

Read Socket

Read Count?

gptp parsemsg

gptp handleEvent

Sleep(1)

Running?

gptp exit

> 0
<= 0

TRUE

FALSE

Figure 4.2: gPTPd - Main Flow Diagram

Û gptp init - This functions handles the initialization of the gPTP daemon. This

functions handles the initialization of the variables and state machines. It puts

the state machines into initial states. Also it parses the command line arguments

provided when the program was invoked and stores the configuration for further

use.

Û gptp setup - This function handles the process to create the daemon based on the

configuration. It first forks the current process, closes the standard file descriptors



Synchronized real time audio streaming over ethernet in embedded systems 55

and exits the main process thus creating the daemon. The default configuration is

to run as a daemon, but if the command line arguments specify to run as a normal

application (for debugging or to demo the operation etc...), the steps to create a

daemon are skipped and the program continues as a normal operation.

Û gptp start - This function mainly handles the initialization of the sockets which

will be used for the Ethernet communication for the gPTP commands. First the

sockets are opened and the socket options for the hardware time stamping (refer

3.1.1) are set and the socket buffers for transmission and reception are initialized.

After this function the process enters a event loop which executes every 1 second

and always processes the following functions.

Û gptp timers - This function is the first operation in the event loop. It checks

if the any of the running timers that are started has now expired. These timers

are mainly used to execute the gPTP commands which are to be executed in

periodical time intervals. The inbuilt timers of Linux is not used as the timer

resolution need not be precise and to keep the single threaded implementation

simple. This function checks the time stamps of the last time when the timer

expired to the current time stamp to determine which timers are expired.

Û gptp parsemsg - This function parses the socket data read from the socket to

determine what gPTP command has been received. It then maps the received

command as an event for the state machines. The command parameters are also

parsed and stored separately for further use in the state machines.

Û gptp handlemsg - This functions is the main entry point for the state machines.

The current event (either the timer event or the event from the received gPTP

message) is passed on to the respective state machine for processing.

The state machines used in the gPTP daemon are described below with their respective

state diagrams.

4.2.1 Peer Delay Measurement State Machine

The Peer delay measurement is the process in which a network node measures the

propagation delay between it’s network port to the network ports of its immediate



Synchronized real time audio streaming over ethernet in embedded systems 56

neighbor which is described in 3.3.1. The state machine of the peer delay measurement

process is illustrated in figure 4.3. The states involved in the peer delay measurement

are as follows

• Init - The initial state of the state machine

• Idle - The state where there are no operations i.e. Between the periodic delay

measurement period and when there is no pending request from a neighbor device.

• WDresp - The Delay Response Wait State is entered when the periodic timer for

the PDelayReq command is expired and the PDelayReq command is sent and

awaiting the response.

• WDflw - The Delay Response Followup Wait state, where the PDelayResponse

has been received but now waiting for the PDelayReponseFollowUp command.

Init

Idle

WDresp

WDflw

Enable

RxDelayReqT imer/

TxPDelayReqRxDelayResp

RxDelayRespF lwUp

Figure 4.3: gPTPd - Peer Delay Measurement State Diagram

When the state machine transfers from the WDflw state all the required time stamps

for a delay estimation is available and the delay is calculated and stored. After the next

timer event the process is repeated again and the delay is estimated again and updated.

4.2.2 Best Master Selection State Machine

The best master selection is the process in which the network nodes select a device as

the grand master device among capable devices in the network as described in 3.3.1.



Synchronized real time audio streaming over ethernet in embedded systems 57

The state machine of the best master selection process is illustrated in figure 4.4. The

states involved in the best master selection are as follows

Init

Grand master

Slave

Enable / Start Timer

RxAnnounceT imer/TxAnnounce

RxAnnounce

RxAnnounceandRxAnnounceTo

Figure 4.4: gPTPd - Best Master Selection State Diagram

• Init - The initial state of the best master selection algorithm.

• Grandmaster - The state where this device is selected as the grand master. This

is the initial state when the process is started and it remains in the state until

an announce message with a better clock or a high priority message is received

at which point we transition to the slave state and remain there until there is a

timeout for an announce message.

• Slave - The state when there is an another device in the network with a better or

high priority clock. When there is no more high priority clock announce messages

for some time then again transition to grand master state.

4.2.3 Time synchronization State Machine

The time synchronization is the process in which the current time is synchronized from

the grand master to all the slaves in the network as described in 3.3.1. The state machine

of the time synchronizartion process is illustrated in figure 4.5. The states involved in

the time synchronization are as follows



Synchronized real time audio streaming over ethernet in embedded systems 58

Init

Grand master

Slave

Enable / Start Timer

RxSyncT imer/TxSync

ToSlave

ToGrandMaster

RxSync/RxSyncFollowUp

Figure 4.5: gPTPd - Time Synchronization State Diagram

• Init - The initial state of the time synchronization algorithm.

• Grandmaster - The state is entered when the best master algorithm selects this

device as the grand master. In this state the Sync message with the current time

is broad-casted periodically.

• Slave - The state entered when the best master algorithm selects some other device

as the grand master. In this state upon reception of the Sync and Sync FollowUp

messages the internal clock is adjusted to the grand master time by using the

received time and measured propagation delay.

4.3 AVB ALSA Driver

Audio device drivers are software modules which enable the operating system to utilize

audio hardware to stream audio in and out of the system. ALSA audio drivers are audio

drivers that are developed as part of the ALSA driver framework where the interface

to the user level software is the same irrespective of the audio device used. The ALSA

framework provides an abstraction of the audio device to the user level applications.

The AVB audio driver is termed as virtual audio driver since there is no physical audio

hardware device instead the audio data is streamed out of the Ethernet port and received

through it.



Synchronized real time audio streaming over ethernet in embedded systems 59

The general design of the AVB Virtual ALSA Audio driver along with it’s internal

modules and their sequence of operations are described in detail in the following sub

sections.

4.3.1 Loadable Kernel Module

The AVB ALSA driver is developed as a loadable kernel module. Loadable kernel

modules are a piece of software which is executed in the kernel space, but still is not

part of the initial kernel code loaded at the time of booting. This loadable kernel code

is loaded delayed at the time of normal operation when the function of this module is

required. This module can be loaded via the command insmod, when invoked through

this command this module is loaded into the kernel and executes as a kernel mode

software. When the function is no more required this can be unloaded via the command

rmmod.

Loadable kernel modules have to implement two functions, one for initialization at start-

up and the other for cleanup before exit. The AVB driver implements the alsa avb init

and alsa avb exit functions for initialization and cleanup. These functions are then

registered with the kernel using the macros module init() and module exit() respectively.

With these registrations if the program is configured as a loadable kernel module in

the Linux kernel build system and compiled the resulting ”snd avb.ko” file becomes

a loadable kernel module. When loaded using the insmod function of the kernel the

program is loaded into the kernel memory and the initialization function (alsa avb init)

is invoked, where the further initialization of the module can continue leading to normal

operation. Once the module is removed using the rmmod function the cleanup function

(alsa avb exit) is invoked where the resources used by the module are freed and processes

stopped. When this function returns to the kernel, the module is removed from the kernel

memory thus completing the unloading.

4.3.2 Platform Device Driver

The AVB driver follows the ”platform device driver model” of Linux kernel device drivers.

The platform device driver model is used for unconventional devices which are not con-

nected to the established general purposes buses such as PCI, USB etc... The platform



Synchronized real time audio streaming over ethernet in embedded systems 60

devices are represented as stand alone devices connected to a pseudo bus inside the

Linux driver framework. This driver model is used for legacy devices, system on chips,

processors, integrated peripherals and virtual devices. To create a virtual platform de-

vice and an associated driver the following steps are executed (refer also the flow chart

in figure 4.6) in the module initialization function alsa avb init :

alsa avb init

platform driver register

platform device register simple

platform get drvdata

Create Work queues

exit

Figure 4.6: Platform device-driver initialization

• The driver is registered with the kernel using the function platform driver register,

which passes the platform driver type variable to the kernel. This variable contains

the pointers for the probe and remove functions for the driver along with name

and the supported features of this driver. The kernel uses the functions registered

to probe for the hardware when the device is added and remove the driver when

the device is removed.

• Then as this is a virtual device the device would be found or enumerated by the

kernel and so the kernel has to be told that the device is present. This is done

using the function platform device register simple where the name of the device is

passed along the index of the device.

• After the device is registered with the kernel, the device is activated by calling the

function platform get drvdata. When this function is called, the probe function of

the driver is invoked and thus the driver can start it’s operation.



Synchronized real time audio streaming over ethernet in embedded systems 61

When the platform device has been successfully registered and the driver is loaded the

local initialization steps can be executed. The one major initialization carried here is to

create the work queues required for the driver operation. The work queues in Linux are

way to defer some work for a later time to a kernel process. They differ from other forms

of deferred executions such as task queues in the context where the deferred functions

are executed. In the work queues the deferred functions run in a kernel process context

and not in a kernel interrupt context which enables the deferred functions to execute

any function including blocking functions. The following APIs are used to manage the

work queues:

• create workqueue is used to create a work queue instance in the kernel. The only

parameter required to create a work queue is the name for the work queue.

• INIT DELAYED WORK is used to initialize a delayed work by specifying the

function which has to be executed, the id of the delay work and the data which

has to be passed to the deferred function.

• queue delayed work is then used to actually add the delay work to the work queue

in the kernel. The added work is then executed deferred after the time provided

has been expired.

• cancel delayed work is used to remove any queued but not yet executed work items

from the work queue. Before the work queue is closed the pending items has to be

cancelled using this function.

• flush workqueue is used to clear all the work items that are started but not yet

finished. This call makes sure that there are no unfinished work pending in this

work queue. This has to executed before closing the work queue.

• destroy workqueue is used to actually close the work queue and release all the

resources associated with it.

When the device is to be removed the platform device and driver are de-registered in

the clean up function for the module alsa avb exit. Also all the resources allocated for

the driver has to be freed and cleaned up before the module is unloaded.



Synchronized real time audio streaming over ethernet in embedded systems 62

4.3.3 ALSA Audio Driver Framework

The platform device driver model discussed in the previous section explains the model

how the hardware interface of the device is handled (device detection, enumeration,

management of resource such as interrupt lines, i/o pins, memory etc... and control

of the device) with in the kernel. There is also several models for the driver based on

the interface exposed to the user mode programs. Some examples are character drivers,

block drivers, network drivers. For audio device drivers in Linux there is one more model

of driver namely, ”ALSA Audio Device Driver”. The AVB driver is based on this ALSA

Audio Device Driver model. The ALSA audio framework manages all of these audio

device drivers in a common way be providing a common framework to which all the

drivers has to be adopted.

The initialization of an ALSA AVB sound driver is illustrated in the figure 4.7, where a

new sound card is created and the various interfaces to the sound card are described and

the sound card registered. The initialization of the AVB ALSA audio driver is executed

in the alsa avb probe function where the kernel requests for the hardware detection and

initialization. The following steps are involved in the initialization:

• At first a new sound card instance is created using the function snd card new. This

functions allocates the required resources for the sound card operation.

• After a sound card instance has been created the interface to the sound card has

to be described. ALSA supports several different interfaces such as PCM, MIDI,

control, hardware specific etc...

• A new PCM instance is created using the function snd pcm new and then the

capabilities of the playback and capture functionalists are set using the function

snd pcm set ops for both playback and capture functions. Here the range of audio

parameters (sample rates, number of channels, format etc...) supported by the

device are registered.

• A new hardware specific interface is created using the function snd hwdep new.

This hardware specific interface is used to set and get the AVTP time stamps for

the audio streaming.



Synchronized real time audio streaming over ethernet in embedded systems 63

• And finally the newly created sound card is registered with the kernel using the

function snd card register.

alsa avb probe

snd card new

snd pcm new

snd pcm set ops(playback)

snd pcm set ops(capture)

snd hwdep new

snd card register

platform set drvdata

Create sockets

exit

Figure 4.7: ALSA AVB audio driver initialization

When the sound card is created and registered, the card instance is set to the driver using

the function platform set drvdata. This data is returned to the driver initialization call

of platform get drvdata completing the driver initialization. After these steps the AVB

specific initialization is carried out. One important step in the AVB specific initialization

is to create the sockets for the Ethernet communication required for AVB. For AVB a

raw socket is created for the first network interface (which is traditionally called ”eth0”

in Linux systems).



Synchronized real time audio streaming over ethernet in embedded systems 64

When the sound card is created, two interfaces for the sound card are defined and

implemented namely the PCM interface and the hardware specific interface. Here the

PCM interface is used for audio streaming in and out of the sound card and the hardware

specific interface is used for implementing specific interface functions for this AVB ALSA

sound driver. The more detailed information regarding the interfaces are explained in

the following sub sections.

4.3.3.1 PCM Interface

The PCM interface for the sound driver is the main interface for the sound driver

for streaming audio. Each sound driver can have at max up to four PCM instances.

Each of these PCM instances can carry multiple sub streams each of which can be a

playback stream or a capture stream. The PCM instance is created using the functions

snd pcm new() and for the playback and capture streams, the reference to the functions

that handle the PCM operations are registered via the function snd pcm set ops(). More

detailed explanation of the PCM interface and the required functions for the interface

are explained in the section regarding the AVTP talker and listener in section 4.3.6

4.3.3.2 Hardware dependent Interface

The hardware interface for the sound driver is used to implement an interface for the

unique features that are unique for the hardware. In case of the virtual AVB ALSA

driver, this interface is used to provide an interface to AVB specific features that are

associated with the audio streaming. More specifically this hardware specific interface is

mainly used to exchange the synchronized time stamp to and from the user space audio

application using this driver. The synchronized time (obtained from the synchronized

hardware clock) at which a sample has to be presented at the listener is sent through

this interface when the associated sample is sent via the PCM interface. In the other

way the received presentation time received from the talker along with the audio samples

are returned to the audio application along with the associated audio samples.

The hardware dependent interface is created using the function snd hwdep new() and

then the functions required for the implementation of the hardware dependent interface



Synchronized real time audio streaming over ethernet in embedded systems 65

are registered. The minimum required functions to be implemented for the hardware

dependent interface are listen below along with a short description:

• * hwdep open - This function is used to create and initialize the required resources

for the operation of the hardware specific interface functions. As for the AVB

ALSA virtual driver there is no hardware no hardware specific initialization is

required.

• * hwdep ioctl - This function is used to handle the input output requests to the

hardware specific interface. For each feature specific to the hardware, an ioctl id is

declared and defined through which the hardware specific feature can be accessed.

The following hardware specific ioctl ids are defined for the AVB ALSA driver:

– AVB HWDEP IOCTL SET TS : This ioctl is used to set the presentation

time stamp for the current audio frame that is being transferred. This ioctl

has to be invoked when the associated audio frame is transferred from the

user space. The time stamp has to be collected from the gPTP hardware

clock and then any offset has to be added to generate the presentation time

stamp.

– AVB HWDEP IOCTL GET TS : This ioctl is used to get the presentation

time stamp for the current audio frame received from the talker. This ioctl

is to be invoked when the audio frame is read in to the user space. This

presentation time is to be used to determine when the audio frame is to be

rendered.

– AVB HWDEP IOCTL SET GRAND MASTER: This ioctl is used to set the

grand master id for the AVB network. This ioctl is invoked from the gPTP

daemon to set the id of the grand master device when the best master algo-

rithm decides a device as the grand master.

• * hwdep release - This function is used to release all the resources used for the

hardware specific interface. Hence the AVB ALSA driver does not use any hard-

ware specific resources no cleanup is required.



Synchronized real time audio streaming over ethernet in embedded systems 66

4.3.4 AVDECC Talker and Listener

The first requirement for the AVB device in the network is to discover and enumerate

itself and other devices in the network. The AVB Device Discovery Enumeration Com-

mand and Control protocol is used 3.3.4.The AVDECC protocol is implemented in the

work queue of the AVB driver, since the execution of this protocol has to be in back-

ground with no relation to the ALSA interface of the driver. The work queue part of

the AVDECC implementation is illustrated in figure 4.8 and described in detail below:

avbWqFn

Initialized?

Initialized?

avb avdecc init

queue delayed work(t1)

Time Elapsed?

avb avdecc listen and respond

avb adp advertise

queue delayed work(t2)

exit

no
yes

no

yes

yes

no

Figure 4.8: AVDECC Workqueue Flow Diagram

• When the work queue is invoked for the task of AVDECC, it is first checked if

the initialization is completed, if not the initialization function ”avb avdecc init”

is executed, where the socket for the AVDECC communication is initialized.

• If for some reason the initialization failed the AVDECC work task is again queued

using queue delayed work with a longer timeout (t1)



Synchronized real time audio streaming over ethernet in embedded systems 67

• For every cycle of the work task, after successful initialization first the transmit

opportunity checked. The AVDECC advertise command for the device discovery

is transmitted in periodic intervals using the avb adp advertise function.

• After optional transmission any incoming AVDECC commands are read and if

required responses for the command are sent out. This is handled by the function

avb avdecc listen and respond. The details of this command is described in detail

below.

• At the end the work item is again queued in the work queue with a shorter time

out t2 and when the work task is invoked again the whole process is repeated

again.

The avb avdecc listen and respond function is comprised of several sub funtions to han-

dle the entire AVDECC protocol. The full details are illustrated in figure 4.9 and

described in detail below:

• At start the AVDECC socket is listened to and any pending data is read through

the function avb avdecc listen. The socket read is read in blocking mode with a

short timeout.

• When there is no data read the function returns immediately, but there is some

data read the following actions are executed.

• The read data is interpreted as a AVTP common control header format and the

AVTP sub-type is extracted. If this not a known valid AVTP sub-type then

the function returns immediately. For known and valid sub-types further parsing

continues.

• Based on the sub-type the functions avb avdecc * respondToCmd are used to fur-

ther parse and respond to the commands.



Synchronized real time audio streaming over ethernet in embedded systems 68

avb avdecc listen and respond

avb avdecc listen

Read Size?

AVTP Subtype?avb avdecc adp respondToCmd

avb avdecc acmp respondToCmd

avb avdecc aecp respondToCmd

Msgtype?

avb avdecc aecp respondToAEMCmd

exit

> 0

AECP

ADP

ACMP

AEM

Others

<= 0

Others

Figure 4.9: AVDECC Listen and Respond Flow Diagram

As described above, after every work task for AVDECC another work task is queued

and thus the AVDECC listener is always available and responds to all the incoming

AVDECC commands.

4.3.5 MSRP

The Multiple Stream Reservation Protocol (MSRP) which is used to reserve for network

resources is implemented almost the same way as the AVDECC protocol implementation.

It also is executed through work taks in the work queue. The MSRP protocol is initiated

when the streaming is initiated by the ACMP protocol. The talker first sends the talker



Synchronized real time audio streaming over ethernet in embedded systems 69

declarations for the stream to be transmitted, waits for the responses and decides if

the stream reservations is succeeded or not. In case of listeners the incoming talker

advertisements are evaluated and listener responses are sent out. The work queue part

of the MSRP implementation is illustrated in figure 4.10 and explained in detail below:

avbWqFn

Initialized?

Initialized?

avb msrp init

queue delayed work(t1)

TX STATE?

avb msrp talkerdeclarations

avb msrp listen

TX STATE AND RX STATE?

queue delayed work(t2)

exit

no
yes

no

yes

Others

READY

Others

READY

Figure 4.10: MSRP Workqueue Flow Diagram

• When the work queue is invoked for the task of MSRP, it is first checked if the

initialization is completed, if not the initialization function ”avb msrp init” is ex-

ecuted, where the socket for the MSRP communication is initialized.

• If for some reason the initialization failed the MSRP work task is again queued

using queue delayed work with a longer timeout (t1)



Synchronized real time audio streaming over ethernet in embedded systems 70

• For every cycle of the MSRP work task, after successful initialization, the MSRP

TX state is checked. When the state is not ready the MSRP talker advertise

command is sent out for the current stream requirements using the command

avb msrp talkerdeclarations.

• After the optional talker advertisements any incoming MSRP commands are read

and if required responses for the command are sent out. This is handled by the

function avb msrp listen.

• At the end the work item is again queued in the work queue with a shorter time

out t2 and when the work task is invoked again the whole process is repeated

again.

4.3.6 AVTP Talker and Listener

The Audio Video Transmission Protocol implementation inside the AVB driver is directly

tied to the ALSA audio driver model. Hence in-order to describe the implementation of

the AVTP talker and listener protocols a good understanding of the ALSA audio driver

model and related APIs are required. The ALSA Audio driver model and the APIs it is

made up are explained in detail below:

• * open - This function is invoked by the ALSA middle-ware when the audio driver

is loaded. When this function is invoked the hardware device has to be opened

and initialized.

• * close - This function in invoked by the ALSA middle-ware when the audio

driver is unloaded. When this function is invoked the hardware device has to be

closed and terminated.

• * hw params - This functions is invoked by the ALSA middle-ware when the

user application opens and configures the device for usage (set parameters such

as sample rate, number of channels, bits per sample etc...). Here the actual audio

configuration to be used is configured to the device and the resources are allocated

and the device is set ready for streaming.



Synchronized real time audio streaming over ethernet in embedded systems 71

• * free - This functions is invoked by the ALSA middle-ware when the user appli-

cation stops the streaming and closes the device. Here the resources allocated for

the streaming can be freed and the device can be put to idle.

• * trigger - This function is used by the ALSA middle-ware to trigger certain

events in the streaming. When the triggers are invoked the the device has to be

controlled according to the event.

• * hw pointer - The ALSA middle-ware uses this function to request the position

of the hardware pointer (i.e. the pointer of the audio buffer in the device up-to

which the audio samples are processed). Based on this hardware pointer position

the ALSA middle-ware either copies more data for playback use-cases and reads

more data for recording use-cases.

• * copy - This function is used by the ALSA middle-ware to copy the actual audio

data to and from the device. The amount of data copied is configured at the time

of configuration by the * hw params.

The functions of the driver listed above are not directly invoked by the user space

application that is using the device. Instead the user invokes the ALSA middle-ware

library which in-turn invokes the functions of the driver for the device currently under

use. But in any case the normal usage of playback or capture the following general

sequence is illustrated in the images 4.11 and 4.12 and described below:

• When the streaming starts the PCM interface is opened using the avb capture open()

for audio capture or using the avb playback open() for audio playback. In the open

functions the sub stream information is passed as an input argument which is a

placeholder for all the information required for the playback or capture of the sub

stream.

• Before either playback or capture the stream has to be configured i.e. various

parameters such as sample rate, number of channels, frame size etc... are to be

configured. For this purpose the either the function avb playback hw params for

playback or the function for avb capture hw params for capture is used. Also after

the parameters are configured the other resources required for the streaming are

also initialized. For playback the following initialization are carried out:



Synchronized real time audio streaming over ethernet in embedded systems 72

– The audio playback buffer for the hardware is allocated and initialized.

– The AVTP header is initialized with the playback parameters configured for

the stream.

– The time stamp array which holds the presentation time for the audio frames

to be sent out is initialized.

– A timer is allocated according to the sample rate configured in-order to send

audio frames in regular intervals. The high resolution timer of the Linux ker-

nel is used for this purpose. The API hrtimer init() is used for this purpose.

Similarly for the capture function, the following initialization are carried out in

the snd capture hw params() function:

– The audio capture buffer for the hardware is allocated and initialized.

– The time stamp array which holds the received presentation time for the

audio frames is initialized.

– A delayed work is initialized and added to the work queue for the reception

of the AVTP audio frames from the talker device. This delay work is receives

the AVTP audio frames, decodes them and adds them to the allocated buffer.

• After the PCM is opened and configured, the streaming can be controlled by the

functions avb playback trigger and avb capture trigger for playback and capture

respectively. The commands received in the trigger functions such as

– SNDRV PCM TRIGGER START

– SNDRV PCM TRIGGER STOP

are used to start and stop respectively the playback or capture of the stream.

• After starting the playback or capture using the trigger function, the ALSA middle-

ware starts to fill the hardware buffer or read from the hardware buffer using the

functions avb playback copy and avb capture copy respectively. After playback of

audio frames or capture of audio frames, the driver advances the hardware pointer

according to the number of audio samples played back or captured. The ALSA

middle-ware uses the functions avb playback pointer and the avb capture pointer

to know about the position of the playback and capture hardware pointer respec-

tively. Based on this the ALSA middle-ware calculates the free space available in



Synchronized real time audio streaming over ethernet in embedded systems 73

the buffer (in case of playback) or the number of audio samples available in the

buffer (in case of capture) and either copy more audio samples in the buffer (in

case of playback) and copy the captured audio samples from the buffer (in case of

capture) using the functions avb playback copy and avb capture copy respectively.

This process is repeated until the streaming is stopped.

Note: As the playback and capture buffer inside the driver are allocated in the

kernel memory space, in the functions avb playback copy and avb capture copy the

audio frames in the kernel buffer can not be directly copied to or copied from to

any user space buffers. As doing so would be a potential security violation as it

provides access to kernel memory space to user level applications. To overcome

this issue the kernel functions copy from user and copy to user are used respec-

tively to read from and to write into user space buffers from the kernel buffer.

These functions checks the validity of the user space buffer pointers, their access

privileges and then setup the processor access rights to copy the data across kernel

memory boundary.

• During playback at every invocation of the playback timer, a fixed number of audio

samples are packed together and then the AVTP header is added on top. This

AVTP frame is then transmitted over the Ethernet.

• Similarly when an AVTP frame is received, the AVTP header is extracted and

validated. The total number of audio samples available is extracted from the

header and the same number of audio samples are copied from the AVTP frame

and then copied into the hardware buffer.

• To stop the playback or capture the ALSA middle-ware first stops the stream-

ing using the trigger functions avb playback trigger and avb capture trigger and

then frees the hardware resources using the functions avb playback hw free and

avb capture hw free. Here the allocated resources such as the buffer are freed

and the running timers, delayed work entries etc... are stopped and cleared.

After the PCM interface is closed using the functions avb playback close and

avb capture close.



Synchronized real time audio streaming over ethernet in embedded systems 74

:UserApplication :ALSA Middle-ware :AVB Driver :Kernel

snd pcm open(Playback) avb playback open() sock create()

snd hwdep open() avb hwdep open()

snd pcm set params() avb playback hw params() hrtimer init()

snd hwdep ioctl(ts) avb hwdep ioctl()

snd pcm writei() avb playback copy()

looploop Priming Loop

avb playback trigger(START) hrtimer start()

snd hwdep ioctl(ts) avb hwdep ioctl()

avb avtp timer()

sock sendmsg()

looploop AVTP Loop

looploop Timer Loop

snd pcm writei() avb playback pointer()

avb playback copy()

looploop Playback Loop

snd pcm close() avb playback trigger(STOP)

avb playback hw free() hrtimer try to cancel()

avb playback close()

PCM interface is opened.

Hardware dependent interface is opened.

The parameters of the stream are config-

ured.

Before an audio frame is transferred the

presentation time stamp is sent.

In the priming loop all the data written is

just copied to the hardware buffer without

starting the streaming.

After the hardware buffer is full (i.e.

Primed) the streaming is started.

Then the playback loop is started, the

ALSA middle-ware get the position of the

hardware pointer and when free space is

available on the hardware buffer data is

copied again into the hardware buffer.

When the PCM interface is closed, the

streaming is first stopped and then the

hardware resources are released and then

the PCM interface is closed.

When the PCM interface is

opened, a socket is created for

AVTP communication.

During hardware parameters

configuration the high resolu-

tion is initialized.

When the streaming is started

the high resolution timer is

started.

During streaming for every timer tick

the available audio frames are packed

into AVTP frames and transmitted

via the socket. And finally when the

streaming is stopped the socket is

closed

Figure 4.11: AVTP AVB Playback



Synchronized real time audio streaming over ethernet in embedded systems 75

:UserApplication :ALSA Middle-ware :AVB Driver :Kernel

snd pcm open(Capture) avb capture open() sock create()

snd hwdep open() avb hwdep open()

snd pcm set params() avb capture hw params()queue delayed work()

avb pcm start() avb capture trigger(START)

avbWqFn()

sock recvmsg()

looploop AVTP Loop

snd pcm period elapsed()

looploop Priming Loop

snd pcm readi() avb capture pointer()

avb capture copy()

avbWqFn()

sock recvmsg()

looploop AVTP Loop

snd pcm period elapsed()

looploop Work Loop

snd hwdep ioctl(ts) avb hwdep ioctl()

looploop Playback Loop

snd pcm close() avb capture trigger(STOP)

avb capture hw free() cancel delayed work()

avb capture close()

PCM interface is opened.

Hardware dependent interface is opened.

The parameters of the stream are config-

ured.

The stream capture is started.

After the stream capture is started, for

every work queue invocation, the socket is

read and the AVTP frames are decoded

and the audio frames are copied into the

hardware buffer. Also the presentation time

stamp from the AVTP header is extracted

and stored.

Based on the hardware buffer position, the

extracted audio frames are read from the

hardware buffer, when the read is invoked

from the user application.

Then the associated presentation time

stamp is read from the user application.

When the PCM interface is closed, the

streaming is first stopped and then the

hardware resources are released and then

the PCM interface is closed.

When the PCM interface is

opened, a socket is created for

AVTP communication.

During hardware parameters

configuration the a delayed

work item is added to the

work queue.

When the PCM interface is closed, the

delayed work is cancelled.

Figure 4.12: AVTP AVB Capture



Synchronized real time audio streaming over ethernet in embedded systems 76

4.4 Test Application

A test application is developed to demonstrate the various features of the AVB Stack

developed in the BeagleBone Black and x15 platforms. The test application uses the

common ALSA library interface to stream synchronized audio data via the virtual AVB

sound card. It also uses the PTP hardware clock to get the time for the synchronized au-

dio streaming. The general architecture, various features and limitations of the provided

test application are discussed in detail in the following subsections.

4.4.1 Usage

The command line usage of the AVB test application is as given in the following syntax

and it is also explained in detail below.

avbtest−[p|r|a|b|x|y]−c < num channels > −s < sample rate > −n < num frames >

−d < device name > −l < log level >< input|output file >

• The first option is the operation mode of the test application. The following

operation modes are followed:

– -p: Playback: The AVB normal playback mode. The input file is streamed

through AVB ALSA virtual device.

– -r: Record: The AVB normal record mode. The audio stream received

through the AVB ALSA virtual device is written as a wav file with the name

given as the output file.

– -a: Demo Mode A: Device ’A’ operation for the demo setup ’AB’. More details

in the section 4.4.2.

– -b: Demo Mode B: Device ’B’ operation for the demo setup ’AB’. More details

in the section 4.4.2.

– -x: Demo Mode X: Device ’X’ operation for the demo setup ’XY’. More details

in the section 4.4.2.

– -y: Demo Mode Y: Device ’Y’ operation for the demo setup ’XY’. More details

in the section 4.4.2.



Synchronized real time audio streaming over ethernet in embedded systems 77

• -c<num channels>: The number of channels to be recorded. To be used only with

operation modes -r, -b, -y (i.e. where recording of AVB stream is required).

• -s<sample rate>: The stream rate of the incoming stream to be recorded. To be

used only with operation modes -r, -b, -y (i.e. where recording of AVB stream is

required).

• -n<num frames>: The total number of frames to be recorded from the incoming

stream to be recorded. To be used only with operation modes -r, -b, -y (i.e. where

recording of AVB stream is required).

• -d<device name>: The device to be used for streaming if it is different from the

default. Default AVB device: ”hw:CARD=avb,0”. Default analog multi-channel

device ”hw:CARD=C8CH,0”

• input—output file: The file name of the wave file that is to be played for operating

modes involving playback. Or the file name under which the recorded audio data

is to be written to the disk.

4.4.2 Features and Limitations

The features of the AVB test application generally revolves around the needed require-

ments to demonstrate the various features of the AVB ALSA virtual driver. The basic

features are to use the AVB ALSA virtual driver as any other audio driver and to play-

back and record audio streams through it. And then there are other modes of operation

which are used to test the time synchronization of the AVB streaming and to test the

multi-channel and high sample rate streaming of the AVB ALSA virtual device. The

demo modes along with their demo setup are explained in detailed below:

4.4.2.1 Demo Mode ’AB’

This mode is used to demonstrate the synchronized streaming of AVB with stereo

streams. Two AVB devices running the AVB ALSA virtual driver is required for this

demonstration setup. The basic idea of this setup that the device ’B’ streams the given

wavw file as a AVB stream with a presentation time starting with a pre-determined time



Synchronized real time audio streaming over ethernet in embedded systems 78

and the device ’A’ will simultaneously plays-back the audio file specified through an ana-

log audio card at the same pre-determined start time and receives the AVB stream and

plays-back the AVB stream at the received presentation time through a different ana-

log audio card or through the same audio card (second stereo channel of multi-channel

card). With this setup the device ’A’ will output two analog stereo streams both should

be time synchronized according to the setup. To test the time synchronization between

the two analog streams, they are fed into a test PC and recorded and tested. The test

setup is illustrated below:

A
V

B
P

ort
8

C
h

an
n

el

O
u

tp
u

t
P

ort

8
C

h
a
n

n
el

In
p

u
t

P
o
rt

Device ’A’

BeagleBone

Black

or x15

Multi-

channel

audio card

(e.x. CTAG

face2|4)

A
V

B
P

ort

Device ’B’

BeagleBone

Black

or x15

A
u

d
io

In
p

u
t

P
o
rt

Test Device (Any

device with multi-

channel audio

recording support)

AVB Stream

Audio Stream

AVB Audio Stream

Figure 4.13: Demo Setup AB - Variation 1

A slight variation of this test setup is possible where the recording of the output analog

streams are not done is a separate PC, but it is done in the same device ’A’ through

a multi-channel input audio card. Thus the audio analog streams are looped back into

the device and recorded simultaneously as multi-channel recording where the synchro-

nization can be tested. This variation is illustrated below:



Synchronized real time audio streaming over ethernet in embedded systems 79

A
V

B
P

ort
8

C
h

a
n

n
el

O
u

tp
u

t
P

ort

8
C

h
an

n
el

In
p

u
t

P
ort

Device ’A’

BeagleBone

Black

or x15

Multi-

channel

audio card

(e.x. CTAG

face2|4)

A
V

B
P

o
rt

Device ’B’

BeagleBone

Black

or x15

AVB Stream

Audio Stream

AVB Audio Stream

Figure 4.14: Demo Setup AB - Variation 2

4.4.2.2 Demo Mode ’XY’

This mode is used to demonstrate the synchronized multi-channel and high sample rate

AVB streaming between 2 devices supporting AVB ALSA virtual device. In this setup

both the devices have a multi-channel audio sound card. The device ’Y’ streams the

given wave file through AVB port with a presentation time set from a pre-determined

start time. The device ’X receives the AVB stream and loops it back to the multi-channel

audio card according to the received presentation time. The device ’Y’ also streams the

same wave file through it’s mutli-channel audio card starting at the same pre-determined

time. Both these multi-channel audio streams are fed into a test device where they are

recorded and then time synchronization is tested.



Synchronized real time audio streaming over ethernet in embedded systems 80

A
V

B
P

ort
8

C
h

an
n

el

O
u

tp
u

t
P

o
rt

Device ’X’

BeagleBone

Black

A
V

B
P

ort
8

C
h

a
n

n
el

O
u

tp
u

t
P

o
rt

Device

’Y’ Beagle

board x15

Audio

Input Port

Test Device (Any device with multi-channel audio recording support)

AVB Stream

Audio Stream

AVB Audio Stream

Figure 4.15: Demo Setup XY

4.4.3 Design and Implementation

The basic design of the test application is as follows, first the input arguments are

parsed to find out about the operational mode and other parameters. In case the input

parameters are incomplete or wring the usage instructions for the test applications are

printed out and then the test application exits the operation. Based on the input

parameters (as explained in section 4.4.1) parsed, a new playback or record instance is

configured and then the configured instance execution is started in a new thread.

Based on the operation mode required there may also be a need for multiple playback

and recording instances. In which case multiple threads are created and for each thread

a playback or record thread is configured. In this case the test application continues

operation until all the threads has stopped their execution of the required operation.

This basic design is illustrated as follows:



Synchronized real time audio streaming over ethernet in embedded systems 81

start

Valid Mode?

initAndStartThreads

WaitForThreads

printUsage

exit

yes

no

Figure 4.16: AVB Test Application

4.4.3.1 Playback

A playback instance operation is described below and illustrated in the figure 4.17

• First the given file is opened as a binary file. If the file cannot be opened for any

reason, the playback cannot continue and the playback thread exits.

• When the file is opened the wave header is read, parsed and validated. If the wave

header is incorrect the playback thread also exits.

• If the playback is through the AVB device the PCM and hardware dependent

interfaces of the AVB AlSA virtual device are opened. Else for normal audio card

playback only the PCM interface is opened. Then the PCM interface is configured

with the audio parameters from the wave file for playback.

• After the PCM interface is configured, the playback loop is started and the audio

samples are read from the wave file and sent to the PCM interface of the driver

until all the audio samples in the wave file or until the required amount of audio

samples are streamed.

• If the time synchronization is requested, the playback loop is not started until the

pre-determined time is reached. For simplicity in the AVB test application this



Synchronized real time audio streaming over ethernet in embedded systems 82

pre-determined time is defined as the next second which is a full multiple of 3.

The playback loop executes a busy-wait in a loop where the PTP hardware time

is checked every 100 micro-seconds until we reach the second which is an interger

multiple of 3.

• If time stamping option is set, the hardware clock is used to calculate the presen-

tation time and it is set through the hardware dependent interface.

• It is also possible that the playback is not from a wave file, but from an audio

buffer where another thread is recording and storing audio samples. For this live

playback mode, a wave file is not opened but the audio parameters are configured

from the command line and the audio samples are read directly from the audio

buffer and streamed through the open PCM interface as described above.

• When the streaming is completed, the PCM interface is closed and the playback

thread exits.



Synchronized real time audio streaming over ethernet in embedded systems 83

start

From Buffer? fopen Extract Wave Header

snd hw dep open

snd hw pcm open

snd pcm set params

clock gettime

Start Time Reached? Sleep 100 µ s

Samples Remaining?

From Buffer?

Copy from buffer Read from file

snd hwdep ioctl

snd pcm writei

Increment read size

snd pcm close

snd hwdep close

exit

No

Yes

No

Yes

Yes

No

Yes

No

Figure 4.17: AVB Test Application - Playback Thread

4.4.3.2 Record

A record instance operation is described below and illustrated in the figure 4.18



Synchronized real time audio streaming over ethernet in embedded systems 84

• First a wave file with a temporary name is opened as a binary file. If the file cannot

be opened for any reason, the record cannot continue and the record thread exits.

• If the record is from the AVB device the PCM and hardware dependent interfaces

of the AVB AlSA virtual device are opened. Else for normal audio card playback

only the PCM interface is opened. Then the PCM interface is configured with the

audio parameters from the wave file for recording.

• After the PCM interface is configured, the record loop is started and the audio

samples are read from the driver and then written to the output file until the

required amount of audio samples are recorded.

• The time synchronization option is not applicable for the record instance as there

is no playback involved.

• If time stamping option is set, the presentation time stamp is read from the hard-

ware dependent interface and stored.

• It is also possible that the record does not store the audio samples to a wave file,

but to an audio buffer from which another thread will playback the audio samples.

For this live record mode, a wave file is not opened but the audio parameters are

configured from the command line and the audio samples are read written to the

audio bufferfrom the open PCM interface as described above.

• When the recording is completed, if the wave file audio samples are written to a

file and not to a buffer, a new wave file is opened with the given name. First a

new wave file header is cretaed using the audio parameters used for streaming and

the information regarding the total number of reocrded samples. First this new

wave header is written to the file and then the audio samples from the temporary

file is copied to the output file.

• When the output file is written the PCM interface is closed and the record thread

exits.



Synchronized real time audio streaming over ethernet in embedded systems 85

start

To Buffer? fopen(tempfile)

snd hw dep open

snd hw pcm open

snd pcm set params

snd pcm prepare

snd pcm start

Samples Remaining?

snd pcm readi

snd hwdep ioctl

To Buffer?

Copy to buffer Write to file

Increment read size

snd pcm drop snd pcm close

snd hwdep close

To Buffer?

fclose(tempfile)

fopen(outfile)

Write wave header

Copy audio samples

flcose(outfile)

exit

No

Yes

Yes

No

Yes

No

No
Yes

Figure 4.18: AVB Test Application - Record Thread



Chapter 5

Development

As the design and the implementation details of the various software modules used for the

AVB stack implementation are detailed in the previous chapter, this chapter discusses

the development details for these software modules including the various development

processes, development tools and development strategies used.

5.1 Google Summer of Code

The main inspiration for the ”Synchronized real time audio streaming over Ethernet in

embedded systems” project came from the involvement in the Google Summer of Code

(GSoC). This thesis is an extension of the GSoC project titled, ”BeagleBone AVB Stack”

[22]. This GSoC project was executed as one of the GSoC projects for the Beagle Board

organization.

The Google Summer of Code is an international annual program for students, in which

Google will provide stipends for successful completion of development of an open source

software project task from one of the several participating software development organi-

zations. The main aim of the program is to improve the open source software develop-

ment projects and inspire students to contribute more to the open source development

projects.

All participating organizations first have to be selected by Google and after selection

they are assigned a maximum number of projects that they can offer to students. The

86



Synchronized real time audio streaming over ethernet in embedded systems 87

organizations then come-up with a list of projects that it wishes to be taken up by

students. Students have to create a proposal for any of those list of projects wished by the

organization or also they can create a proposal of their own. The proposals are evaluated

by the respective organization and the final list of accepted students are published. When

a student is accepted by an organization for a project, the student has to complete the

project in hand during the summer within the agreed upon milestone. The organization

assigns mentors for the students to help the development and to evaluate the results of

the project.

The implementation details and the various features of the GSoC Project ”Beaglebone

AVB Stack” are listed below [23]:

• Implementation of the set of protocols required for a AVB audio streaming between

2 devices.

• Beagle bone black devices are chosen as the development environment.

• Only Stereo channel and low audio bit-rate streams are supported.

• Only the basic functionality of the AVB streaming is evaluated (i.e. no detailed

analysis of the stream parameters or no testing of compatibility to other devices)

After the successful completion of the GSoC Project, the same is expanded with new

requirements for this Thesis. The new requirements on top the work done for the GSoC

are as follows:

• Improvements to also support the Beagle board x15 devices.

• Improvements to also support multi-channel and high bit-rate streams.

• Improvements to add support for inter-operability to any other standard AVB

device (Mackbook pro laptops).

• Detailed analysis of the streaming including synchronization accuracy, latency and

other parameters and conclude regarding the merits and demerits of the AVB

protocol and the implementation of AVB stack in the beagle bone platform.



Synchronized real time audio streaming over ethernet in embedded systems 88

5.2 Development environment

All the software components are developed on a Linux host computer running Ubuntu

operating system. The linaro cross compiler is used to cross compile the source code in

the Linux host for the beagle bone devices.

The gPTP daemon is developed platform independent and hence it is possible to also

run the gPTP daemon also in any Linux based system. But when executed in normal

x86 systems the Linux time-stamping employed is software time-stamping which is less

accurate and in these systems, for synchronization normal clocks are used instead of

hardware clocks. Irrespective of these limitations executing gPTP daemon in a x86

environment on a Linux host is useful as it supports better debugging tools and hence

the development time is shortened. The gPTP daemon source code is version controlled

under git and hosted at github here 1

As the AVB ALSA driver is developed as part of the Linux kernel, a new development

branch 2 is created from the Linux kernel repository for beagle bone black version 4.4

long term support branch 3. The AVB ALSA driver is developed as any other loadable

kernel module and tested only in the beagle bone black device. The kernel is also cross

compiled in a Linux host. When the kernel is built the resulting loadable kernel module

file is transferred to the beagle bone black and loaded into the kernel.

The test application is a normal Linux executable which is also developed in the Linux

host machine and then cross compiled to the beagle bone black. It is version controlled

similarly in a git reprository and hosted at github here 4

5.3 Debugging

Debugging of the software is mainly done by analyzing the logs created during execution.

Based on the software component various log destinations are used.

• For gPTP daemon the logs are routed to the syslog interface, which can be viewed

using the file ”/var/log/syslog” in the Linux file system.

1”https://github.com/induarun9086/gPTPd”
2”https://github.com/induarun9086/beagleboard-linux”
3”https://github.com/beagleboard/linux”
4”https://github.com/induarun9086/avbtest”



Synchronized real time audio streaming over ethernet in embedded systems 89

• For the AVB ALSA driver, the logs are printed using the kernel version of printf

(i.e. printk) to the kernel log buffer. This log buffer contents are also transferred

to the syslog. Also the kernel log messages can also be viewed by the dmesg

command.

• The test applications logs are directly printed in the console using normal printf.



Chapter 6

Evaluations

This section details the various setups, experiments and their results, leading to the

evaluation of the various operational parameters of the AVB software stack.

6.1 Delay Variation

The delay variation is defined as the variance the successive peer to peer delay mea-

surement values 3.3 in the gPTP protocol. Although the delay measurement process

follows the same procedure every time, random variations in the time stamping (since

the normal crystal clocks used are not perfect) leads to sightly different delay values for

every measurement. In ideal case the variance should be zero and the delay should be

the same for every measurement, but in normal working conditions this will not be the

case. The aim here is that the delay variance should be as small as possible. Since the

clock synchronization between the two devices depends on the measured delay, if the

delay variation is small the clock synchronization accuracy will be high.

Any setup described in the section 4.4.2 can be used for the delay variation measurement.

The general setup is as follows, two devices that support hardware time stamping is

connected with a cross Ethernet cable. In this case a beagle bone black and beagle

board x15 are connected via a cross Ethernet cable. The gPTP daemon is started in

both these devices using the following command

> ./gPTPd -n -l6

90



Synchronized real time audio streaming over ethernet in embedded systems 91

To view the measured delay values the gPTP daemon application is started as a normal

application using the -n switch (i.e. normal mode as opposed to daemon mode). Also

the log level is set to log level 6 using the -l6 switch to view the measured delay values

in the console. The raw log of a such execution is given in appendix A.1, from this log

50 successive measured delay values are extracted and plotted below in the figure 6.1

0 10 20 30 40 50
800

820

840

860

880

900

Measurement Number

D
el

ay
(n

s)

Measured delay for gPTP

Mean Delay: 841.88 ns

Standard deviation: 8.89 ns

Variance: 79.05 ns

Figure 6.1: gPTP Delay Variance

From the above graph the average value for the measured delay value is calculated as

841.88 ns and the average standard deviation is calculated as 8.89 ns. Also from the

normal distribution 6.2 of the measured delay values we can see that it approximates a

bell curve (i.e. normal distribution) indicating that the measured delay values follow a

natural normal distribution with no other external influences.

From the above discussions it can be decided that the measured delay values does not

influence the clock synchronization too much as the variance is only in the order of 10 ns

which is negligible for most audio applications. Also this delay variance is much smaller

than other parameters which influence the synchronization.



Synchronized real time audio streaming over ethernet in embedded systems 92

810 820 830 840 850 860 870

0

2

4

6

8

10

12

Figure 6.2: gPTP Delay Histogram

6.2 Clock Drift

Clock drift is defined as the amount a clock drifts away from another clock, from a defined

point in time when the both clocks have the same time value. Since the frequency of the

crystal oscillators used in the embedded systems as clock sources are highly unstable,

it increases the clock drift. Crystal oscillators are highly influenced by environmental

factors such as heat, stress, moisture and inherent factors such as age. Since clock drift

affects the clock synchronization it has to be kept low for synchronized audio streaming.

To measure the clock drift any setup described in the section 4.4.2 can be used as same

as for the delay variation measurement. The general setup is as follows, two devices that

support hardware time stamping is connected with a cross Ethernet cable. In this case

a beagle bone black and beagle board x15 are connected via a cross Ethernet cable. The

gPTP daemon is started in both these devices using the following command

> ./gPTPd -n -l5

The command is similar to that of the command required for the delay measurement

experiment, but the log level is set a little higher at level 5 with the -l5 switch to view

some more extended logs required to calculate the clock drift. The raw log of clock drift

experiment is given in appendix A.2, from this successive measured clock drift values



Synchronized real time audio streaming over ethernet in embedded systems 93

are extracted and plotted below in the figure 6.3

0 2 4 6 8 10 12 14
20

25

30

35

Measurement Number

C
lo

ck
d

ri
ft

(µ
s/

s)

Measured Clock Drift

Mean Drift: 28.17 µs/s

Standard deviation: 0.637 µs/s

Variance: 0.406 µs/s

Figure 6.3: Hardware Clock Drift

A sample clock drift calculation is explained below with the pair of logs below. These

logs are generated when the gPTP slave device receives the sync follow-up command

the clock synchronization is calculated. The values are explained as follows.

• SyncTxTime - Tx time stamp when the Sync gPTP command was transmitted by

the gPTP initiator.

• SyncRxTime - Rx time stamp when the Sync gPTP command was received in the

gPTP responder.

• lDelayTime - Measured gPTP delay.

• CurrSynOff - Offset for local clock to the initiator clock.

• prSyncTime - Local time before synchronization.

• poSyncTime - Local time after synchronization.

[000000484481] gPTPd: @@@ SyncTxTime: 1503126212_411757622

[000000484481] gPTPd: @@@ SyncRxTime: 1503126212_410850350

[000000484481] gPTPd: @@@ lDelayTime: 0_000000823



Synchronized real time audio streaming over ethernet in embedded systems 94

[000000484481] gPTPd: @@@ CurrSynOff: 0_000908095 (-1)

[000000484481] gPTPd: @@@ prSyncTime: 1503126213_411821643

[000000484481] gPTPd: @@@ poSyncTime: 1503126213_412733008

[000000515481] gPTPd: @@@ SyncTxTime: 1503126244_413223246

[000000515481] gPTPd: @@@ SyncRxTime: 1503126244_412314482

[000000515481] gPTPd: @@@ lDelayTime: 0_000000823

[000000515481] gPTPd: @@@ CurrSynOff: 0_000909587 (-1)

[000000515481] gPTPd: @@@ prSyncTime: 1503126244_412608332

[000000515481] gPTPd: @@@ poSyncTime: 1503126244_413521159

The elapsed time between the two synchronizations is calculated as the difference from

the two SyncTxTime values. During this elapsed time the difference in the clock progress

between the two devices is given as the value CurrSynOff in the second log. So the drift

rate is calculated as the ratio between the CurrSynOff and the elapsed time.

From the figure 6.3 the mean clock drift rate is calculated as 28.17 µs/s and the standard

deviation is 0.637 µs/s. From these values we can see that although the drift rate is little

higher the variance is low i.e. the clock drift is always constant which can be corrected.

As in real embedded system crystal oscillator based clocks the clock drift cannot be

avoided, to has to be mitigated by some other means. This is covered by the gPTP

protocol synchronization process. By periodically synchronizing the slave devices to the

grand master device, the clock drift is reset periodically and the synchronization is re-

established. So the maximum drift the slave clock encounters is limited to the amount

of drift that is accumulated during the time before the next synchronization.

Based on the current default sync repetition time of 32 seconds, the maximum clock

drift for the slave device can be up-to a maximum value of 900 µs. Choosing a smaller

sync repetition time will limit this clock drift value to a lower value. Although this value

can affect the media synchronization it is limited to the sub milli-second range which is

still low enough to be perceived in real world scenario.



Synchronized real time audio streaming over ethernet in embedded systems 95

6.3 Synchronization Accuracy

The synchronization accuracy is defined as the time delta between the streams output

by two devices. To test this the Demo XY setup 4.15 is used. Here both the beagle bone

black and the beagle board x15 playbacks the same stream synchronously. These streams

are recorded through an external recording device and analyzed for synchronization.

First the demo setup explained in 4.15 is setup and the AVB software stack is started

using the following series of commands,

> sudo ./gPTPd

> sudo insmod /lib/modules/4.9.50+/kernel/sound/core/snd-hwdep.ko

> sudo insmod snd-avb.ko

Where with the first command the gPTP daemon is started with it’s default arguments

and operation mode. Then the hardware dependent ALSA library is loaded which is

required for the hardware dependent interface in the AVB ALSA driver and finally the

AVB ALSA driver itself is loaded. After all these are loaded the gPTP processes such as

delay measurement and clock synchronization is started and in the AVB ALSA driver

the device detection, enumeration and control processes are started.

When the AVB stack is initialized and started the avb test application can be started

for testing the media synchronization. For this first in the beagle board x15 device the

following command is executed.

> sudo ./avbtest -y -c2 -s48000 -l2 rec.wav

And in the beagle bone black device the following command is executed

> sudo ./avbtest -x -l2 test.wav

In parallel the analog audio playback from these devices are recorded in an external

device. After the streaming is completed, the recorded file is opened in an audio edit-

ing software such as Audacity to check for the synchronization. The result of such as

experiment is given in the figure 6.5 with an explanation below it.



Synchronized real time audio streaming over ethernet in embedded systems 96

Figure 6.4: Full Record of Synchronization test

Figure 6.5: Audio Synchronization



Synchronized real time audio streaming over ethernet in embedded systems 97

In the stream in the figure above two channels are recorded each one from a different

device. It is done such a way for easy comparison of the stream from both devices. This

is evident from the fact that the two wave forms are not of the exact level as they are

played back from different device with different audio cards which may be set different

volume levels the levels of these streams is not equal. But still we can see the general

waveform of these streams which can be used for comparison. For the actual comparison

select a crest or a trough in one channel and then select until the same crest or a trough

in the other channel and then count the number of samples in the selected portion of the

wave form. Then the number of samples and the sampling rate is used to calculate the

actual synchronization accuracy. So from the above figure there are 15 samples in the

selected portion of the wave form. The recording is at a sampling rate of 48000 Hz. So

according to the following calculation the synchronization accuracy is 1.437 ms between

these two streams.

Synchronization Accuracy = (15 / 48000) = 312.5 µs

As it is generally accepted that any audio delay less than 10 ms is not perceivable to

the human ear [24] [25], the synchronization accuracy of less than 1 ms is acceptable for

most streaming applications.

6.4 Latency

The latency is a measure of the time it takes for the samples to reach the destination

from the time they are transmitted. For a real time audio streaming system the latency

should be as low as possible.

To measure the latency of the AVB ALSA driver based streaming the following exper-

iment is carried out. For this purpose a AVB stream is played from one device and

recorded in the second device. The time the streaming started in the first device is

noted down and also the time when the first frames received in the second device is

noted down. The difference between these two time stamps is the latency. The two time

stamps can be directly compared and subtracted since the hardware clocks of these two

devices are synchronized and any drift between them is negligible (refer 6.3).



Synchronized real time audio streaming over ethernet in embedded systems 98

First the demo setup explained in 4.15 is setup and the AVB software stack is started as

explained in the previous section regarding the synchronization accuracy measurement

6.3. When the AVB stack is initialized and started the avb test application can be

started for testing the media synchronization. For this first in the beagle board x15

device the following command is executed.

> sudo ./avbtest -r -l2 rp.wav

And in the beagle bone black device the following command is executed

> sudo ./avbtest -p -l2 test.wav

debian@BeagleBoard-X15:~/avbtest$ sudo ./avbtest -p -l2 piano2.wav

AVB Test Application Oct 10 2017 21:58:03

avbtest: Playing back -1 frames from file piano2.wav (ch: 2 sr: 48000)

t0: Playback params ringbufsize: 1536, periodsize: 384

t0: Playback starting @ 1503125410 s 576817781 ns

t0: First frame transferred @ 1503125410 s 576944541 ns

avbtest: Thread t0 exit with result: 0

avbtest: Operation completed

debian@beaglebone:~/avbtest$ sudo ./avbtest -r -l2 rp.wav

avbtest: Recording -1 frames to file rp.wav (ch: 2 sr: 48000)

t0: Record params ringbufsize: 1536, periodsize: 384

ALSA lib pcm.c:7843:(snd_pcm_recover) overrun occurred

t0: First frame received @ 1503125410 s 595405977 ns

t0: Short read (expected 384, read 48)

avbtest: Thread t0 exit with result: 0

avbtest: Operation completed

With the above commands the AVB streams is played back from the beagle bone black

device. In the test application when the first frame is transmitted the time stamp is

noted and printed to the console. When the first frame is received in the beagle board

x15, again the time stamp is noted and printed out by the test application receiving the



Synchronized real time audio streaming over ethernet in embedded systems 99

stream. The logs of such an execution is given in above logs. The following two lines

from the image is of our interest, from these values the latency is calculated as below.

t0: First frame transferred @ 1503125410 s 576944541 ns

t0: First frame received @ 1503125410 s 595405977 ns

Latency = (1503125410 s 576944541 ns) - (1503125410 s 595405977 ns)

Latency = 0 s 18,461,436 ns = 18.46 ms

Although the measured latency of 18.46 ms is not sufficient for real time audio streaming

in live low latency applications, it is just almost sufficient for most of the real time audio

streaming for media applications. But if more lower latencies are required the size of

the hardware buffer has to be decreased. But decreasing the size of the hardware buffer

can result in frequent under-flows in the streaming which can lead to audio breaks. So

a fine balance is required to trade-off between low latency and reliable and continuous

audio streaming.

6.5 MAC AVB Detection

The AVB ALSA driver running in the Beagle Bone can also be detected as an AVB sound

device in MacBook pro computers. To test the detection, the Beagle Bone Black has to

be directly connected to the MacBook pro using a ethernet cross cable. In MacBook Pro

models where no ethernet port available a thunderbolt ethernet adapter can be used.

But a USB ethernet adapter should not be used. The AVB driver can be started using

the following commands:

> sudo ./gPTPd

> sudo insmod /lib/modules/4.9.50+/kernel/sound/core/snd-hwdep.ko

> sudo insmod snd-avb.ko

It takes some seconds for the AVDECC enumeration to take place after which the AVB

device can be seen under the ”Audio MIDI Setup - Window - Show Network Device

Browser”. The screen shot of this detection is given in the following image.



Synchronized real time audio streaming over ethernet in embedded systems 100

Figure 6.6: MAC AVB Detection

Also in the MacBook pro the operational parameters of the AVB connection can be seen

using the ”avbdiagnose” command, which produces a log as given appendix A.3.



Chapter 7

Limitations

Apart from the various features of the AVB software stack discussed in the previous

sections for the synchronized real time audio streaming, there are also some limitations.

These limitations are listed and described briefly below:

• In gPTP daemon, only one port per device is supported, for example although

beagle board x15 contains two Ethernet ports the gPTP can communicate through

only one Ethernet port at a time. This is different from the gPTP specification

where multiple ports per device can be supported.

• Seamless changeover from between grand masters is not supported. Hence when

a grand master changes there will be an abrupt jump in the synchronized time.

• Only Ethernet physical medium (IEEE 802.3) is supported although the specifi-

cation provides support for IEEE 802.11 (Wi-fi) and IEEE 802.3 Passive optical

links.

• The Forwarding and Queuing for Time-Sensitive Streams (FQTSS) improvement

for the networking queues are not implemented.

• Only the AVDECC responder role is implemented, but does not support the

AVDECC controller role.

• Regarding streaming a maximum of 8 channels and maximum sampling rate of

up-to 192kHz is supported.

• Only one playback and capture stream is possible in parallel.

101



Chapter 8

Conclusion

The previous sections elaborate on the objectives laid out in the introduction of this

thesis 1.6.

In the Literature review section 2 the various current implementations of the AVB

stack are listed and described in detail. It was concluded there that although several

implementations for the AVB stack are available, either they are not complete turn key

solutions or in case of complete solutions they are not available in public domain as open

source software. So there is a need for a complete open source AVB stack solution.

The technical review section 3 describes the various technical details of the AVB stan-

dards, Linux operating system and the beagle board hardware. These details are required

to be clearly understood before a AVB solution is designed and implemented.

In the next sections of implementation 4 and development 5 the implementation details of

the various modules involved in the AVB software stack are described in detail explaining

the various features of the software modules and their detailed design. The development

section describes the various development strategies, tools and environments used in the

development of the software modules for the AVB software stack.

And finally in the evaluation section 6, several experiments are carried out in order

to calculate the various operational parameters regarding the synchronization and la-

tency of the audio streaming. The experiments and their results are described in detail

and then the results are interpreted and discussed in detail regarding their impact in the

102



Synchronized real time audio streaming over ethernet in embedded systems 103

synchronized, real time streams. Here the various results pointed out that the AVB soft-

ware stack implemented is indeed sufficient for a synchronous, real time audio streaming.

Finally the limitations of the AVB software solution are listed in 7.

To summarize, AVB was proposed as a solution for a synchronized, real time audio

streaming in embedded systems. The proposed solution is researched, it’s technical de-

tails are studied and a software solution is designed and implemented. Beagle bone

devices, BeagleBone black and BeagleBoard x15 are chosen as a hardware platform for

evaluating the solution. The implemented AVB solution is evaluated on these beagle

board devices. By analyzing the results of the evaluations it is concluded that synchro-

nized, real time audio streaming is possible in embedded systems using the proposed

AVB software solution and the beagle board devices are sufficient in providing an en-

vironment for a stable and synchronized hardware clock through gPTP and sufficient

bandwidth through the integrated Ethernet ports. And because of their small form

factor, power and support for a range of Capes that extend their functionality, the

combination of the beagle board devices plus the proposed AVB solution can provide a

platform for synchronized real time audio streaming applications.

Some future enhancements for the proposed solution includes removing the limitations

found, expand for other platforms, make it more configurable and improving the overall

performance figures by even more strict implementation of the protocols and through

more testing and evaluations.



Appendix A

Evaluation Logs

A.1 Delay variance measurement logs

[000000000000] gPTPd: -------------------------------------

[000000000001] gPTPd: gPTP Init bbb Jan 3 2018 20:38:01

[000000000001] gPTPd: -------------------------------------

[000000000029] gPTPd: ---> Assuming grandmaster role

[000000010030] gPTPd: ---> gPTP msrdDelay: 836

[000000019030] gPTPd: ---> gPTP msrdDelay: 832

[000000028030] gPTPd: ---> gPTP msrdDelay: 834

[000000037077] gPTPd: ---> gPTP msrdDelay: 856

[000000046078] gPTPd: ---> gPTP msrdDelay: 844

[000000055078] gPTPd: ---> gPTP msrdDelay: 834

[000000064078] gPTPd: ---> gPTP msrdDelay: 835

[000000073086] gPTPd: ---> gPTP msrdDelay: 833

[000000082086] gPTPd: ---> gPTP msrdDelay: 835

[000000091086] gPTPd: ---> gPTP msrdDelay: 847

[000000100119] gPTPd: ---> gPTP msrdDelay: 863

[000000109118] gPTPd: ---> gPTP msrdDelay: 846

[000000118118] gPTPd: ---> gPTP msrdDelay: 843

[000000127118] gPTPd: ---> gPTP msrdDelay: 838

[000000136118] gPTPd: ---> gPTP msrdDelay: 839

[000000145118] gPTPd: ---> gPTP msrdDelay: 849

[000000154118] gPTPd: ---> gPTP msrdDelay: 841

[000000163118] gPTPd: ---> gPTP msrdDelay: 848

[000000172118] gPTPd: ---> gPTP msrdDelay: 833

[000000181118] gPTPd: ---> gPTP msrdDelay: 848

[000000190118] gPTPd: ---> gPTP msrdDelay: 836

[000000199162] gPTPd: ---> gPTP msrdDelay: 864

104



Synchronized real time audio streaming over ethernet in embedded systems 105

[000000208162] gPTPd: ---> gPTP msrdDelay: 837

[000000217162] gPTPd: ---> gPTP msrdDelay: 828

[000000226162] gPTPd: ---> gPTP msrdDelay: 838

[000000235170] gPTPd: ---> gPTP msrdDelay: 842

[000000244170] gPTPd: ---> gPTP msrdDelay: 847

[000000253170] gPTPd: ---> gPTP msrdDelay: 850

[000000262203] gPTPd: ---> gPTP msrdDelay: 865

[000000271202] gPTPd: ---> gPTP msrdDelay: 842

[000000280202] gPTPd: ---> gPTP msrdDelay: 849

[000000289202] gPTPd: ---> gPTP msrdDelay: 845

[000000298202] gPTPd: ---> gPTP msrdDelay: 841

[000000307202] gPTPd: ---> gPTP msrdDelay: 831

[000000316202] gPTPd: ---> gPTP msrdDelay: 846

[000000325202] gPTPd: ---> gPTP msrdDelay: 835

[000000334202] gPTPd: ---> gPTP msrdDelay: 840

[000000343202] gPTPd: ---> gPTP msrdDelay: 846

[000000352202] gPTPd: ---> gPTP msrdDelay: 840

[000000370246] gPTPd: ---> gPTP msrdDelay: 845

[000000379246] gPTPd: ---> gPTP msrdDelay: 845

[000000388246] gPTPd: ---> gPTP msrdDelay: 838

[000000397258] gPTPd: ---> gPTP msrdDelay: 833

[000000406258] gPTPd: ---> gPTP msrdDelay: 841

[000000415258] gPTPd: ---> gPTP msrdDelay: 842

[000000424288] gPTPd: ---> gPTP msrdDelay: 866

[000000433286] gPTPd: ---> gPTP msrdDelay: 836

[000000442286] gPTPd: ---> gPTP msrdDelay: 835

[000000451286] gPTPd: ---> gPTP msrdDelay: 832

[000000460286] gPTPd: ---> gPTP msrdDelay: 831

A.2 Clock drift measurement logs

[000000094291] gPTPd: @@@ SyncTxTime: 1503125823_211258798

[000000094291] gPTPd: @@@ SyncRxTime: 1503125823_210380945

[000000094291] gPTPd: @@@ lDelayTime: 0_000000828

[000000094291] gPTPd: @@@ CurrSynOff: 0_000878681 (-1)

[000000094291] gPTPd: @@@ prSyncTime: 1503125823_210724283

[000000094291] gPTPd: @@@ poSyncTime: 1503125823_211606219

[000000127322] gPTPd: @@@ SyncTxTime: 1503125856_243282526

[000000127322] gPTPd: @@@ SyncRxTime: 1503125856_242371615

[000000127322] gPTPd: @@@ lDelayTime: 0_000000828

[000000127322] gPTPd: @@@ CurrSynOff: 0_000911739 (-1)

[000000127322] gPTPd: @@@ prSyncTime: 1503125856_242685968

[000000127322] gPTPd: @@@ poSyncTime: 1503125856_243600955



Synchronized real time audio streaming over ethernet in embedded systems 106

[000000160322] gPTPd: @@@ SyncTxTime: 1503125888_243720926

[000000160322] gPTPd: @@@ SyncRxTime: 1503125888_242833794

[000000160322] gPTPd: @@@ lDelayTime: 0_000000828

[000000160322] gPTPd: @@@ CurrSynOff: 0_000887960 (-1)

[000000160322] gPTPd: @@@ prSyncTime: 1503125889_243800335

[000000160322] gPTPd: @@@ poSyncTime: 1503125889_244691539

[000000191322] gPTPd: @@@ SyncTxTime: 1503125920_245272246

[000000191322] gPTPd: @@@ SyncRxTime: 1503125920_244381174

[000000191322] gPTPd: @@@ lDelayTime: 0_000000828

[000000191322] gPTPd: @@@ CurrSynOff: 0_000891900 (-1)

[000000191322] gPTPd: @@@ prSyncTime: 1503125920_244687753

[000000191322] gPTPd: @@@ poSyncTime: 1503125920_245582743

[000000224363] gPTPd: @@@ SyncTxTime: 1503125953_287256314

[000000224363] gPTPd: @@@ SyncRxTime: 1503125953_286333308

[000000224363] gPTPd: @@@ lDelayTime: 0_000000828

[000000224363] gPTPd: @@@ CurrSynOff: 0_000923834 (-1)

[000000224363] gPTPd: @@@ prSyncTime: 1503125953_286640473

[000000224363] gPTPd: @@@ poSyncTime: 1503125953_287567562

[000000256370] gPTPd: @@@ SyncTxTime: 1503125985_295276674

[000000256371] gPTPd: @@@ SyncRxTime: 1503125985_294379142

[000000256371] gPTPd: @@@ lDelayTime: 0_000000830

[000000256371] gPTPd: @@@ CurrSynOff: 0_000898362 (-1)

[000000256371] gPTPd: @@@ prSyncTime: 1503125985_294758845

[000000256371] gPTPd: @@@ poSyncTime: 1503125985_295660567

[000000289402] gPTPd: @@@ SyncTxTime: 1503126018_327288266

[000000289402] gPTPd: @@@ SyncRxTime: 1503126018_326359459

[000000289402] gPTPd: @@@ lDelayTime: 0_000000830

[000000289402] gPTPd: @@@ CurrSynOff: 0_000929637 (-1)

[000000289402] gPTPd: @@@ prSyncTime: 1503126018_326667245

[000000289402] gPTPd: @@@ poSyncTime: 1503126018_327599968

[000000322402] gPTPd: @@@ SyncTxTime: 1503126050_327723734

[000000322402] gPTPd: @@@ SyncRxTime: 1503126050_326822826

[000000322402] gPTPd: @@@ lDelayTime: 0_000000830

[000000322402] gPTPd: @@@ CurrSynOff: 0_000901738 (-1)

[000000322402] gPTPd: @@@ prSyncTime: 1503126051_327771070

[000000322402] gPTPd: @@@ poSyncTime: 1503126051_328676014

[000000386443] gPTPd: @@@ SyncTxTime: 1503126115_371288442

[000000386443] gPTPd: @@@ SyncRxTime: 1503126115_370355256

[000000386443] gPTPd: @@@ lDelayTime: 0_000000830

[000000386443] gPTPd: @@@ CurrSynOff: 0_000934016 (-1)

[000000386443] gPTPd: @@@ prSyncTime: 1503126115_370665034

[000000386443] gPTPd: @@@ poSyncTime: 1503126115_371602192



Synchronized real time audio streaming over ethernet in embedded systems 107

[000000418454] gPTPd: @@@ SyncTxTime: 1503126147_383288510

[000000418454] gPTPd: @@@ SyncRxTime: 1503126147_382383076

[000000418454] gPTPd: @@@ lDelayTime: 0_000000823

[000000418454] gPTPd: @@@ CurrSynOff: 0_000906257 (-1)

[000000418454] gPTPd: @@@ prSyncTime: 1503126147_382688614

[000000418454] gPTPd: @@@ poSyncTime: 1503126147_383597976

[000000484481] gPTPd: @@@ SyncTxTime: 1503126212_411757622

[000000484481] gPTPd: @@@ SyncRxTime: 1503126212_410850350

[000000484481] gPTPd: @@@ lDelayTime: 0_000000823

[000000484481] gPTPd: @@@ CurrSynOff: 0_000908095 (-1)

[000000484481] gPTPd: @@@ prSyncTime: 1503126213_411821643

[000000484481] gPTPd: @@@ poSyncTime: 1503126213_412733008

[000000515481] gPTPd: @@@ SyncTxTime: 1503126244_413223246

[000000515481] gPTPd: @@@ SyncRxTime: 1503126244_412314482

[000000515481] gPTPd: @@@ lDelayTime: 0_000000823

[000000515481] gPTPd: @@@ CurrSynOff: 0_000909587 (-1)

[000000515481] gPTPd: @@@ prSyncTime: 1503126244_412608332

[000000515481] gPTPd: @@@ poSyncTime: 1503126244_413521159

[000000548522] gPTPd: @@@ SyncTxTime: 1503126277_455258890

[000000548522] gPTPd: @@@ SyncRxTime: 1503126277_454320299

[000000548522] gPTPd: @@@ lDelayTime: 0_000000823

[000000548522] gPTPd: @@@ CurrSynOff: 0_000939414 (-1)

[000000548522] gPTPd: @@@ prSyncTime: 1503126277_454629596

[000000548522] gPTPd: @@@ poSyncTime: 1503126277_455572122

[000000580533] gPTPd: @@@ SyncTxTime: 1503126309_467404830

[000000580533] gPTPd: @@@ SyncRxTime: 1503126309_466494533

[000000580533] gPTPd: @@@ lDelayTime: 0_000000820

[000000580533] gPTPd: @@@ CurrSynOff: 0_000911117 (-1)

[000000580533] gPTPd: @@@ prSyncTime: 1503126309_466808070

[000000580533] gPTPd: @@@ poSyncTime: 1503126309_467722243

[000000067065] gPTPd: @@@ SyncTxTime: 1503126390_087735838

[000000067065] gPTPd: @@@ SyncRxTime: 1503126390_086816229

[000000067065] gPTPd: @@@ lDelayTime: 0_000000816

[000000067065] gPTPd: @@@ CurrSynOff: 0_000920425 (-1)

[000000067065] gPTPd: @@@ prSyncTime: 1503126390_087275478

[000000067065] gPTPd: @@@ poSyncTime: 1503126390_088199109

[000000099106] gPTPd: @@@ SyncTxTime: 1503126422_130197434

[000000099106] gPTPd: @@@ SyncRxTime: 1503126422_129284587

[000000099106] gPTPd: @@@ lDelayTime: 0_000000822

[000000099106] gPTPd: @@@ CurrSynOff: 0_000913669 (-1)

[000000099106] gPTPd: @@@ prSyncTime: 1503126422_129720851



Synchronized real time audio streaming over ethernet in embedded systems 108

[000000099106] gPTPd: @@@ poSyncTime: 1503126422_130637674

[000000132115] gPTPd: @@@ SyncTxTime: 1503126455_139586978

[000000132115] gPTPd: @@@ SyncRxTime: 1503126455_138646329

[000000132115] gPTPd: @@@ lDelayTime: 0_000000822

[000000132115] gPTPd: @@@ CurrSynOff: 0_000941471 (-1)

[000000132115] gPTPd: @@@ prSyncTime: 1503126455_139080660

[000000132115] gPTPd: @@@ poSyncTime: 1503126455_140025266

[000000165143] gPTPd: @@@ SyncTxTime: 1503126487_168284090

[000000165143] gPTPd: @@@ SyncRxTime: 1503126487_167371203

[000000165143] gPTPd: @@@ lDelayTime: 0_000000812

[000000165143] gPTPd: @@@ CurrSynOff: 0_000913699 (-1)

[000000165143] gPTPd: @@@ prSyncTime: 1503126488_167969880

[000000165143] gPTPd: @@@ poSyncTime: 1503126488_168886875

[000000197141] gPTPd: @@@ SyncTxTime: 1503126520_167590854

[000000197141] gPTPd: @@@ SyncRxTime: 1503126520_166650038

[000000197141] gPTPd: @@@ lDelayTime: 0_000000812

[000000197141] gPTPd: @@@ CurrSynOff: 0_000941628 (-1)

[000000197141] gPTPd: @@@ prSyncTime: 1503126520_167107372

[000000197141] gPTPd: @@@ poSyncTime: 1503126520_168052176

[000000229143] gPTPd: @@@ SyncTxTime: 1503126552_171112454

[000000229143] gPTPd: @@@ SyncRxTime: 1503126552_170199857

[000000229143] gPTPd: @@@ lDelayTime: 0_000000812

[000000229143] gPTPd: @@@ CurrSynOff: 0_000913409 (-1)

[000000229143] gPTPd: @@@ prSyncTime: 1503126552_170500402

[000000229143] gPTPd: @@@ poSyncTime: 1503126552_171416995

A.3 MAC AVB Diagnosis log

Ethernet Interface "en6"

Interface has AVB enabled.

BCM5701Enet

gPTP Present: YES

Link Valid: YES

Link Active: YES

MAC: a8:60:b6:14:a6:3f

Wants Time Sync Service: YES

Time Sync Required: NO

Wants Streaming Service: YES

Wants MSRP: YES

Wants MVRP: YES

Wants ADP: YES

Wants ACMP: YES



Synchronized real time audio streaming over ethernet in embedded systems 109

Wants AECP: YES

Wants MAAP: YES

IOAVB17221RemoteEntity

Time To Live: 62

Entity ID: 0x04a316fffead4156

Entity Model ID: 0x04a316ad41560001

Entity Capabilities: 0x00008508

Talker Stream Sources: 1

Talker Capabilites: 0x4001

Listener Stream Sinks: 1

Listener Capabilities: 0x4001

Controller Capabilities: 0x00000000

Available Index: 92

gPTP Grandmaster ID: 0xa860b6fffe14a63f

Association ID: 0x0000000000000000

MAC Addresses:

04:a3:16:ad:41:56

Wrote /tmp/avbdiagnose-2018-01-10-16-58-26-GMT+1/ALSA_AVB_Driver-0x04a316fffead4156.aemxml

IOAVB17221LocalEntity

Time To Live: 12

Entity ID: 0x35363bca4b08001d

Entity Model ID: 0x35363bca4b080011

Entity Capabilities: 0x00010008

Talker Stream Sources: 1

Talker Capabilites: 0x4801

Listener Stream Sinks: 1

Listener Capabilities: 0x4001

Controller Capabilities: 0x00000000

Available Index: 46

gPTP Grandmaster ID: 0xa860b6fffe14a63f

Association ID: 0x0000000000000000

MAC Addresses:

a8:60:b6:14:a6:3f

Wrote /tmp/avbdiagnose-2018-01-10-16-58-26-GMT+1/ALSA_AVB_Driver-0x35363bca4b08001d.aemxml

IOMVRP has local attributes.

VLAN ID: 2

Registrar State: 0

Applicant State: 5

IOMVRP has remote attributes.

IOMSRPListener has local attributes.

Stream ID: 0x04a316ad41560001

Four Pack: Ignore

Registrar State: 0

Applicant State: 5

IOMSRPListener has remote attributes.

Stream ID: 0xa860b614a63f0000

Four Pack: Ready

Registrar State: 0



Synchronized real time audio streaming over ethernet in embedded systems 110

Applicant State: 0

IOMSRPDomain has properties.

MSRP Capable: YES

Class A PCP: 3

Class A VLAN ID: 2

Class B PCP: 2

Class B VLAN ID: 2

IOMSRPDomain has local attributes.

Traffic Class: 6

PCP: 3

VLAN ID: 2

Registrar State: 0

Applicant State: 5

Traffic Class: 5

PCP: 2

VLAN ID: 2

Registrar State: 0

Applicant State: 5

IOMSRPDomain has remote attributes.

IOMSRPTalker has local attributes.

Stream ID: 0xa860b614a63f0000

Destination MAC: 91:e0:f0:00:ca:2a

VLAN ID: 2

Max Frame Size: 832

Max Interval Frames: 1

Priority: 3

Rank: 1

Accumulated Latency: 123860

Failure Bridge ID: 0x0000000000000000

Failure Code: 0

Registrar State: 0

Applicant State: 5

IOMSRPTalker has remote attributes.

Stream ID: 0x04a316ad41560001

Destination MAC: 91:e0:f0:00:33:4b

VLAN ID: 2

Max Frame Size: 80

Max Interval Frames: 1

Priority: 3

Rank: 1

Accumulated Latency: 1000000

Failure Bridge ID: 0x0000000000000000

Failure Code: 0

Registrar State: 0

Applicant State: 0

IO8021AS has properties.

AS Capable: YES

Clock Identity: 0xa860b6fffe14a63f



Synchronized real time audio streaming over ethernet in embedded systems 111

Grandmaster ID: 0xa860b6fffe14a63f

Remote Clock Identity: 0x04a316fffead4156

Remote Port Number: 1

Link Propagation Delay: 576ns

Remote is on this machine: NO

Propagation Delay Request Log Mean Interval: 0

Sync Log Mean Interval: 253

Announce Log Mean Interval: 0

Clock Priority 1: 248

Clock Class: 248

Clock Accuracy: 254

Clock Priority 2: 248

IOAVBInputUserSpaceStream

Stream ID: 0x04a316ad41560001

PCP: 3

VLAN ID: 2

Destination MAC: 91:e0:f0:00:33:4b

PID: 218

IOAVBOutputUserSpaceStream

Stream ID: 0xa860b614a63f0000

EtherType: 0x22f0

PCP: 3

VLAN ID: 2

Source MAC: a8:60:b6:14:a6:3f

Destination MAC: 91:e0:f0:00:ca:2a

PID: 218

Output Frames: YES



Bibliography

[1] xmos.com, “AN00202 AVB Endpoint,” 2017. [On-

line]. Available: http://www.xmos.com/published/

an00202-gigabit-ethernet-avb-endpoint-example-using-i2s-master?version=latest

[2] beagleboard.org, “Beagle Bone.” [Online]. Available: https://beagleboard.org/

[3] A. Rubini and J. Corbet, Linux Device Drivers, 2nd Edition. O’Reilly&Associates

Inc, June 2001.

[4] IEEE, “IEEE standard for a precision clock synchronization protocol for networked

measurement and control systems,” IEEE Std 1588-2008, 2008.

[5] ——, “IEEE standard for local and metropolitan area networks-virtual bridged

local area networks–amendment 9: Stream reservation protocol (srp),” IEEE Std

802.1Qat, 2010.

[6] ——, “IEEE standard for device discovery, connection management, and control

protocol for ieee 1722(tm) based devices,” IEEE Std 1722.1-2013, 2013.

[7] J. Watkinson, Art of Digital Audio. Taylor & Francis, 2013. [Online]. Available:

https://books.google.de/books?id=WI4gJGEb i0C

[8] B. McCarthy, Sound Systems: Design and Optimization: Modern Techniques and

Tools for Sound System Design and Alignment. Taylor & Francis, 2016. [Online].

Available: https://books.google.de/books?id=FMejCwAAQBAJ

[9] M. Walker, “Choosing an audio interface,” 2008. [Online]. Available: https:

//www.soundonsound.com/sound-advice/choosing-audio-interface

112

http://www.xmos.com/published/an00202-gigabit-ethernet-avb-endpoint-example-using-i2s-master?version=latest
http://www.xmos.com/published/an00202-gigabit-ethernet-avb-endpoint-example-using-i2s-master?version=latest
https://beagleboard.org/
https://books.google.de/books?id=WI4gJGEb_i0C
https://books.google.de/books?id=FMejCwAAQBAJ
https://www.soundonsound.com/sound-advice/choosing-audio-interface
https://www.soundonsound.com/sound-advice/choosing-audio-interface


Bibliography 113

[10] J. Huntington, “AVB and Audinate’s Dante: An Audio Networking Update After

Infocomm 2016,” 2016. [Online]. Available: http://controlgeek.net/blog/2016/6/

25/avb-and-audinates-dante-an-update-after-infocomm-2016

[11] T. Shuttleworth, “The Nominees are AVB or Dante; And the Win-

ner is?” 2015. [Online]. Available: https://www.linkedin.com/pulse/

nominees-avb-dante-winner-tim-shuttleworth/

[12] A. Inc., “Dante Overview,” 2018. [Online]. Available: https://www.audinate.com/

solutions/dante-overview

[13] A. Diarra, T. Hogenmueller, A. Zimmermann, A. Grzemba, and U. A. Khan, “Im-

proved clock synchronization start-up time for ethernet avb-based in-vehicle net-

works,” Proceedings of the IEEE 20th Conference on Emerging Technologies And

Factory Automation (ETFA), 2015.

[14] xmos.com, “sw avb,” 2017. [Online]. Available: https://github.com/xcore/sw avb

[15] J. Koftinoff, “AVB Statusbar,” 2017. [Online]. Available: https://avb.statusbar.

com/

[16] Several, “PTP daemon,” 2017. [Online]. Available: https://github.com/ptpd/ptpd

[17] R. Manzke and H. Langer, “Embedded multichannel linux audiosystem for musical

applications,” in Proceedings of the 12th International Audio Mostly Conference,

ACM, Ed., 2017.

[18] R. Love, Linux Kernel Development (3rd Edition). Pearson publications Inc, 2010.

[19] IEEE, “IEEE standard for audio video bridging (avb) systems,” IEEE Std 802.1BA,

2011.

[20] ——, “IEEE standard for local and metropolitan area networks-virtual bridged

local area networks - amendment: Forwarding and queuing enhancements for time-

sensitive streams,” IEEE Std 802.1Qav, 2009.

[21] ——, “IEEE standard for a transport protocol for time-sensitive applications in

bridged local area networks,” IEEE Std 1722-2016, 2017.

[22] Beagleboard, “GSoC - Beaglebone AVB Stack,” 2017. [Online]. Available: https:

//elinux.org/BeagleBoard/GSoC/2017 Projects#Project: BeagleBone AVB Stack

http://controlgeek.net/blog/2016/6/25/avb-and-audinates-dante-an-update-after-infocomm-2016
http://controlgeek.net/blog/2016/6/25/avb-and-audinates-dante-an-update-after-infocomm-2016
https://www.linkedin.com/pulse/nominees-avb-dante-winner-tim-shuttleworth/
https://www.linkedin.com/pulse/nominees-avb-dante-winner-tim-shuttleworth/
https://www.audinate.com/solutions/dante-overview
https://www.audinate.com/solutions/dante-overview
https://github.com/xcore/sw_avb
https://avb.statusbar.com/
https://avb.statusbar.com/
https://github.com/ptpd/ptpd
https://elinux.org/BeagleBoard/GSoC/2017_Projects#Project:_BeagleBone_AVB_Stack
https://elinux.org/BeagleBoard/GSoC/2017_Projects#Project:_BeagleBone_AVB_Stack


Bibliography 114

[23] ——, “GSoC - Beaglebone AVB Stack Wiki,” 2017. [Online]. Available:

https://elinux.org/BeagleBoard/GSoC/BeagleBoneAVB

[24] C. E. Ralf Steinmetz, “Human perception of media synchronization,” Technical

Report 43.9310, IBM European Networking Center Heidelberg, Germany, 1993.

[25] J. Deber, R. Jota, C. Forlines, and D. Wigdor, “How much faster is fast enough?”

33rd Annual ACM Conference, pp. 1827–1836, 04 2015.

https://elinux.org/BeagleBoard/GSoC/BeagleBoneAVB

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Audio Video Systems
	1.2 Technical Challenges
	1.3 Established solutions
	1.4 Audio over Ethernet Protocols
	1.5 Need for AVB
	1.6 Objectives and Thesis outline

	2 Literature Review
	2.1 Open Solutions
	2.1.1 Open Anvu
	2.1.2 XMOS Xcore
	2.1.3 Miscellaneous Solutions

	2.2 Proprietary Solutions

	3 Technical Background
	3.1 BeagleBone Black
	3.1.1 Ethernet Time stamping
	3.1.2 Audio Cape

	3.2 Linux Operating System
	3.2.1 Linux Kernel
	3.2.2 System calls
	3.2.3 Device drivers
	3.2.4 Networking stack
	3.2.5 ALSA Framework

	3.3 Audio Video Bridging
	3.3.1 Generalized Precision Time Protocol(gPTP)
	3.3.2 Multiple Stream Reservation Protocol (MSRP)
	3.3.3 Forwarding and Queuing for Time-Sensitive Streams (FQTSS)
	3.3.4 AVB Discovery, Enumeration, Connection management and Control (AVDECC)
	3.3.5 Audio Video Transfer Protocol (AVTP)


	4 Implementation
	4.1 Design
	4.2 gPTP Daemon
	4.2.1 Peer Delay Measurement State Machine
	4.2.2 Best Master Selection State Machine
	4.2.3 Time synchronization State Machine

	4.3 AVB ALSA Driver
	4.3.1 Loadable Kernel Module
	4.3.2 Platform Device Driver
	4.3.3 ALSA Audio Driver Framework
	4.3.4 AVDECC Talker and Listener
	4.3.5 MSRP
	4.3.6 AVTP Talker and Listener

	4.4 Test Application
	4.4.1 Usage
	4.4.2 Features and Limitations
	4.4.3 Design and Implementation


	5 Development
	5.1 Google Summer of Code
	5.2 Development environment
	5.3 Debugging

	6 Evaluations
	6.1 Delay Variation
	6.2 Clock Drift
	6.3 Synchronization Accuracy
	6.4 Latency
	6.5 MAC AVB Detection

	7 Limitations
	8 Conclusion
	A Evaluation Logs
	A.1 Delay variance measurement logs
	A.2 Clock drift measurement logs
	A.3 MAC AVB Diagnosis log

	Bibliography

