
Implementation and Performance Analysis
of Precision Time Protocol on Linux based

System-On-Chip Platform

Mudassar Ahmed
mudassar.ahm@hotmail.com

M A S T E R P R O J E C T

Kiel University of Applied Science

MSc. Information Engineering

in Kiel

im Mai 2018

Declaration

I hereby declare and confirm that this project is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Kiel, May 9, 2018

Mudassar Ahmed
mudassar.ahm@hotmail.com

i

Contents

Declaration i

Abstract iv

List of Symbols and Abbreviations vii

1 Introduction 1
1.1 Research Objectives and Goals . 2
1.2 Approach . 2
1.3 Outline . 2

2 Literature Review 3
2.1 Time Synchronization . 3
2.2 Time Synchronization Technologies . 4
2.3 Overview of IEEE 1588 Precision Time Protocol (PTP) 4

2.3.1 Scope of PTP Standard: . 5
2.3.2 Protocol Standard Messages . 5
2.3.3 Protocol Standard Devices . 6
2.3.4 Message Exchange and Delay Computation 7
2.3.5 Protocol Hierarchy Establishment Mechanism 9

3 PTP Infrastructure in Linux 11
3.1 Timestamping Mechanisms . 11

3.1.1 Software Timestamping . 11
3.1.2 Hardware Timestamping . 12
3.1.3 Linux kernel Support for Timestamping 13

3.2 PTP Clock Infrastructure and Control API 14

4 Design and Implementation 16
4.1 Tools and technologies . 16

4.1.1 LinuxPTP . 16
4.1.2 PTPd . 18
4.1.3 stress-ng . 18
4.1.4 iPerf . 18
4.1.5 Matlab . 18
4.1.6 Beaglebone Black . 18

ii

Contents iii

4.2 Design Consideration and System Hierarchy 19

5 Test and Measurements 20
5.1 Test Case Scenarios . 21

5.1.1 Software Timestamping . 21
5.1.2 Hardware Timestamping . 23
5.1.3 Comparison of Software and Hardware based Synchronization . 26
5.1.4 Hardware Assisted Time Synchronization under CPU Load . . . 27
5.1.5 Hardware Assisted Time Synchronization under I/O Load 29
5.1.6 Hardware Assisted Time Synchronization under Network Load . 30

6 Conclusion 34
6.1 Improvements and Future Work . 34

A Appendix: Technical Details 36

B Appendix: Installation Guide 38

C Appendix: Additional Tests and Measurements 44

References 47
Literature . 47
Online sources . 48

Abstract

Associated control and measurement applications require time synchronization and
many embedded systems have on-board sense of time. The specific clock in a networked
system needs to be checked whether the time deviation is acceptable for the particular
application or there is a need for correction in time. So, parallel to control and measure-
ment related communication there is a strong need for clock communication between
system nodes.

The Precision Time Protocol (PTP) specified in IEEE 1588-2008 standard is a self-
organizing and optionally hardware supported time synchronization protocol, the proto-
col operates on master/slave hierarchy on local area networked devices and provides the
opportunity to achieve the sub-microsecond level accuracy on existing multicast sup-
ported LAN network. The PTP protocol does not require additional physical network
infrastructure to establish PTP network, it uses existing LAN network infrastructure.
It is possible that the existing applications running on same system node or in overall
network may affect the performance of the PTP clock synchronization process.

The project aimed to implement and analyze the PTP protocol on hardware-assisted
IEEE 1588 clock based system-on-chip platform (Beaglebone) by using an open-source
solution. The document summarizes PTP protocol and PTP infrastructure in Linux, and
it represents the comparison between software and hardware assist PTP implementation.
In order to analyze the performance and behavior of established PTP network, multiple
tools are used to simulate the load scenario in different dimensions (CPU, I/O and
Network).

iv

List of Figures

2.1 PTP Transparent Clock [9] . 6
2.2 PTP Delay Request-Response Mechanism (End-to-End) [14] 8
2.3 PTP Peer delay Mechanism [11] . 9

3.1 Software Timestamping . 12
3.2 Hardware Timestamping . 13
3.3 PTP Infrastructure in Linux [7] . 15
3.4 PHC API features [7] . 15

4.1 PTP Clock based Time Synchronization in Linux [15] 17
4.2 LinuxPTP based Hardware Assisted Time Synchronization 18
4.3 Architecture of Test Environment . 19

5.1 Timestamping Capabilities of Beaglebone 20
5.2 Software Timestamping based Time Synchronization I 22
5.3 Software Timestamping based Time Synchronization II 22
5.4 Precision of Software based PTP Implementations 23
5.5 Hardware Timestamping based Time Synchronization 24
5.6 Hardware Timestamping based Time Synchronization (Multiple Slaves) 25
5.7 Hardware Timestamping based Time Synchronization (Single Slave) . . 25
5.8 Precision of Hardware based PTP Implementation 26
5.9 Comparison of Software and Hardware based Synchronization 27
5.10 Hardware Assisted Time Synchronization under CPU Load 28
5.11 Precision of Hardware Assisted Time Synchronization under CPU Load 28
5.12 Hardware Assisted Time Synchronization under I/O Load 29
5.13 Hardware Assisted Time Synchronization under Network Load 30
5.14 Hardware Assisted Time Synchronization under Network Load (Low) . 31
5.15 Precision of Hardware Assisted Time Synchronization under Network

Load (Low) . 31
5.16 Hardware Assisted Time Synchronization under Network Load (High) . 32
5.17 Precision of Hardware Assisted Time Synchronization under Network

Load (High) . 33

A.1 Beaglebone Black Key Components . 36
A.2 Beaglebone Black Features . 37

v

List of Figures vi

B.1 Output of Yocto build . 41

List of Symbols and Abbreviations

PTP: Precision Time Protocol
NTP: Network Time Protocol
GPS : Global Positioning System
SoC : System-On-Chip
BBB : BeagleBone Black
TTP : Time-Triggered Protocol
IEEE :Institute of Electrical and Electronics Engineers
UDP : User Datagram Protocol
GM : Grand Master Clock
OC : Ordinary Clock
BC : Boundary Clock
TC : Transparent Clock
BMCA : Best Master Clock Algorithm
PHC : PTP Hardware Clock
API : Application programming interface
OS : Operating System
LAN : Local Area Network
ns : Nano-Second
us : Micro-Second
ms : Mili-Second
sec : Second
POSIX : Portable Operating System Interface
Mb : Megabits
ioctl : input/output control

vii

Chapter 1

Introduction

Continuous transformation of computer systems from large-scale isolated units to ap-
plication specific distributed units is rising the challenge of time synchronization due to
their associated and time-critical actions. These kinds of transformation can clearly be
seen in many industries like, automation, distributed measurement systems and power
distribution systems. Several solutions like GPS and NTP emerged to overcome synchro-
nization challenges. As the large-scale distributed systems are becoming more complex
and modular, where each distributed module/node is communicating via standardized
communication medium, the demand for precision and accuracy of time synchroniza-
tion is increasing, while existing solutions are either limited in term of synchronization
accuracy or requires specialized additional hardware and operational support to ensure
the common time in distributed nodes. On the other hand, installation of additions
time keeping networks and devices makes the system more complex and increases the
troubleshooting and maintenance problems.

IEEE 1588 Precision Time Protocol (PTP) developed to overcome these challenges,
it provides the self-organizing time synchronization protocol while utilizing the existing
system for timekeeping applications. The widespread adaptation of IEEE 1588 Preci-
sion Time Protocol (PTP) is not just limited to industrial automation and measurement
systems, the integration of PTP is also realized and standardized in many leading tech-
nologies/sectors like Audio-Video Bridging, Smart Power Grids and Financial Systems.
Due to widespread recognition of PTP, the silicon vendors are also offering on-board
sense of time support with hardware-assisted timestamping capabilities for the wide
variety of embedded solutions. Additionally, PTP hardware support in mainline Linux
kernel is becoming a catalyst in the development and adaptation of Linux based software
solution for time synchronization applications in different sectors.

Advanced features of System-on-Chip (SoC) platforms are becoming a powerful tool
to implement the different industrial solution as a prototype and PTP community is
providing continuous support for PTP software solutions for Linux based SoC devices,
which are having Hardware timestamping capabilities but these applications are devel-
oped for Linux like operating systems. So, different Linux kernel level resource scheduling
procedures can effect the time timestamping process. The source of these latencies can
be other resource exhausting applications running on the same system. In some cases,
these resource exhausting applications cannot be avoided as an overall system. In this
project, PTP protocol is implemented on SoC platform on which the PTP hardware

1

1. Introduction 2

capabilities are enabled by using Linux kernel PHC API and hardware timestamping
socket option. An opensource PTP solution is used to establish the PTP network for
further analysis.

1.1 Research Objectives and Goals

Goals

• Enabling Hardware timestamping capabilities of Linux bases SoC Platform (Bea-
gleBone Black).

• Analyzing the behavior of open source software solution for PTP implementation,
while simulating different load scenarios (Network load, Processing load) in Linux
OS.

Research Objectives/Questions

• Analysis of precision uncertainty in Hardware and Software based solutions of
PTP.

• What is the maximum attainable accuracy with Hardware and Software based
solutions of PTP?

1.2 Approach
In order to achieve research objectives and to implement IEEE 1588 protocol, linuxPTP
(Opensource PTP implementation) application is used on SoC devices (Beaglebone
Black) in a Linux environment. The protocol hierarchy is established in different test
case scenarios (Hardware assisted and Software based tests). The log data generated in
a specific scenario is prepared and imported to MATLAB workspace, where comparison
of results in different scenarios are compiled in graphical form. These results are further
analyzed and evaluated to draw the final conclusion.

1.3 Outline
First, the report introduces to the time synchronization and give a overview of PTP
protocol in Chapter 2. The Chapter 3 focuses on the Linux support for PTP in the
context of timestamping mechanism and Clock control mechanism. In Chapter 4, a
brief introduction about tools and technologies used in implementation is presented.
The results of test scenarios are presented and discussed in Chapter 5. The Chapter
6 draws final conclusion on work.

Chapter 2

Literature Review

2.1 Time Synchronization
The time is a measurable period in which a particular event, process or action may
occur. In the domain of distributed systems, it can be used to draw a conclusion on the
rate of change, event ordering, an interval between different process and exact time of
particular action.

A clock is used to measure the specific spot in the time or a whole interval of time.
In an embedded system, the clock is driven by an internal oscillator, which generates
the signals with a precise frequency. In some systems there is no timing sense is defined
on both silicon and software level, these kinds of implicit time systems mostly use
a trigger signal in the network to indicate the particular spot in time. On the other
hand, time aware systems are primarily driven by an internal oscillator. In a networked
system, where different nodes having different type of clocks, which are powered by non-
identical oscillators. These oscillators are running at different frequencies and having
different behavior in different conditions (Temperature, Voltage) [1], which results a
timing error. So, there is need for time synchronization to correct the drifting clocks
from the reference time. There are several methods/principles in time Synchronization.
[12] [4]

External Synchronization

In External Synchronization all nodes are synchronized with external time source, that
can be via Internet using NTP or using GPS.

Internal Synchronization

In Internal Synchronization nodes are synchronized with each other via establishing a
master-slave hierarchy base network or with a reference clock. It is not necessary to
synchronize with an external time source.

Hybrid Synchronization

This method is similar to Internal Synchronization but the reference/master clock is
tuned with an external time source.

3

2. Literature Review 4

2.2 Time Synchronization Technologies

SERCOS TTP GPS NTP IEEE-1588

Spatial Extent Local Bus Local Bus Wide Area Wide Area A few Sub-nets

Communications Bus Bus or Star Satellite Internet Network

Target Accuracy Sub-Microseconds Sub-Microseconds Sub-Microseconds Few Milliseconds Sub-Microseconds

Hierarchy Master/Slave Peer ensemble Client/Server Distributed Master/Slave

Administration Configured Configured N/A Configured Self-Organizing

Hardware Assisted YES YES YES NO Optional (For High accuracy)

Table 2.1: Comparison of Time Synchronization Technologies [5, 8, 17]

IEEE 1588

A protocol, which establishes master-slave hierarchy between LAN connected devices,
and enables them to share timing information in order to synchronize their clocks with a
reference time. It is a self-organizing protocol which uses existing infrastructure instead
of dedicated bus to synchronize nodes up-to sub-microsecond level.

NTP:

The main focus of NTP protocol is on the systems, which are spread over a wide network,
the target device is synchronized with a time server over the internet.

GPS:

The GPS systems communicate via satellite, which provides different services including
timing. Regarding time synchronization, GPS is used for autonomous systems which
are remotely located in certain area and receiving timing information via satellite com-
munication.

TTP and SERCOS:

TTP and SERCOS are primarily used in motion control applications, where the sys-
tems are strongly integrated. Synchronization is a subset of these protocols, protocol
applications are not limited to only time synchronization.

2.3 Overview of IEEE 1588 Precision Time Protocol (PTP)

IEEE-1588 Precision Time Protocol (PTP) was first introduced in 2002 [10] and then
further extended in 2008 with extra features (e.g Transparent clocks) [11]. The standard
defines a self-organizing or administrative actions free protocol for the synchronization

2. Literature Review 5

of time. The protocol is ideal for a condition where the time awarded distributed systems
are networked via multicasting supported local area network. It provides flexibility in
the term of requirements in order to establish a synchronization setup from hardware
assisted PTP systems and PTP supported network components (Switches, Routers).

In an established PTP network, there can be protocol supported (e.g. Ordinary and
Boundary clocks) and also other devices (e.g. Printers and non-PTP Bridges/Routers),
which may not aware of PTP system. The hierarchy is established using PTP-devices,
which are mainly real-time clocks. In the protocol hierarchy, top-level clock is called
Grandmaster-Clock, which is treated as a reference time in the network and other
clocks can perform a role of slave or master. In order to extend hierarchy and improve
performance, a PTP-device (Boundary Clock) can also be a slave to its master and also
time-source to other slave devices. The Best Master Clock Algorithm (BMCA) ensures
the self-organizing property of protocol, by enabling PTP device to choose a specific
role in the hierarchy, either in any case of failure of a master clock or in obtaining a
master clock role on the base of clock data sets.

2.3.1 Scope of PTP Standard:
The protocol includes detailed implementation aspects of the protocol on UDP/IP based
local area network along with messages exchange mechanism, standards offset calcula-
tion and management procedures are also described in detail. Along with mandatory
specification, some optional features (e.g Unicast commutation, Alternate timescale. etc)
are also defined for intended applications. In order to ensure backward compatibility a
guideline with comparison is also described in the standard.

The standard also includes generalized software aspects, categorization of standard
messages and their role in time information calculation (Two delay calculation mecha-
nism). For PTP network management, a management procedure/sub-protocol is defined
with dedicated message types to fetch information from network [3]. PTP devices role
in term of time information processing is also specified.

2.3.2 Protocol Standard Messages
The whole hierarchy of PTP system is based on the PTP messages exchange, which
enables every PTP device from the bottom level of the hierarchy to synchronize with
their master device, this chain reaches to Grandmaster clock, which is also called ref-
erence clock. Time the message is sent or received at master/slave device is recorded,
the precision of this time measurements is important in form of timestamp, it sets a
fundamental level of accuracy for time synchronization. PTP messages are categorized
in General Messages and Event Messages.

Event Messages

Event messages are those messages, which are critical for accuracy in both delay cal-
culation mechanism of PTP. Disturbance during transmission of event messages can
possess a huge impact on overall accuracy of the protocol. (Pdelay_Req, Pdelay_resp,
Sync and Delay_Req).

2. Literature Review 6

General Messages

General messages are ordinary data transmitting or configuration messages, which are
not timestamped but used to transport the timestamping informing and play a vital to
setup protocol. (Pdelay_Resp_Follow_Up, Follow_Up, Delay_Resp, Announce, Man-
agement and Signalling messages).

2.3.3 Protocol Standard Devices

Ordinary Clock

The Ordinary device is a single port clock, which can be master or Slave clock. It
communicates with other PTP devices through a single communication path. [10]

Boundary Clock

The Boundary clock node has more than one ports to communicate within the network
through multiple communication paths. Boundary device is complete PTP implementa-
tion, each port of Boundary clock act as Ordinary clock. One port of the device can be
a slave to a Grandmaster (GM) and other port can be a master to other PTP devices.
So, in the case of failure of GM, it will act as time source in the network. [2] [6]

Transparent Clock

Figure 2.1: PTP Transparent Clock [9]

The Transparent clock was first defined in the second version of IEEE-1588 standard.
There is no master/slave state in Transparent clock, according to the defined protocol,
there is no need for synchronization in Transparent clock with Master/Grandmaster
clock. It has multiple communication ports for transferring PTP messages. During for-
warding messages from input port to output port, it computes delay caused by a device
in transferring process of the PTP event messages. The computed delay is called resi-
dence time, this residence time then added to designated correction field part of partic-
ular timing message. Slave clock adjusts the time using this residence time in order to

2. Literature Review 7

overcome the fluctuation caused by the other network establishing devices (e.g Bridges).
[2] [6] [11] [9]

2.3.4 Message Exchange and Delay Computation
In synchronization process, the time information is exchanged between master and slave
for the calculation of offset between clocks and delay caused by the network infrastruc-
ture. For offset correction, Sync message is sent periodically from the master, which
contains the exact time of master but during the process of transferring that message,
it passes through the different layers of system which causes undefined time error, in
order to overcome this problem the Follow_Up message is sent from master which con-
tains the timestamping information of reading of master time in previous step (sync
message).

For network delay computation there are two mechanisms defined, which are used
with different combination of network infrastructure or PTP devices. Overview of the
mechanisms are given below.

Delay Request-Response Mechanism

This mechanism yields mean path delay (Average of the time taken by data to travel be-
tween slave and master). The calculation is performed through the exchange of following
messages.

• Sync message (M): Timestamped message sent to slave.
• Follow_Up message (M): Contains exact time when the Sync Message was

sent.
• Delay_Req message (S): Timestamped message sent to master for network

delay calculation.
• Delay_Resp message (M): Contains the exact time when the Delay_Req mes-

saged received.

2. Literature Review 8

Figure 2.2: PTP Delay Request-Response Mechanism (End-to-End) [14]

As shown in Figure 2.2, Sync message is timestamped at t1 and sent to slave, prac-
tically the Sync message is sent at t2m due to unknown network delays. So, another
Follow_Up message containing the timestamp value of t1 is sent to acknowledge the
slave about the exact instance, when the Sync message was timestamped. Similarly,
Delay_Req message is timestamped at t3 and received at the master at t4 instead of
t3m due to delays, the master clock sends a response message, which contains the exact
time when Delay_Req message was received.

𝑀𝑒𝑎𝑛𝑃𝑎𝑡ℎ𝐷𝑒𝑙𝑎𝑦 = (𝑡2 − 𝑡1) + (𝑡4 − 𝑡3)
2 (2.1)

𝑂𝑓𝑓𝑠𝑒𝑡𝐹𝑟𝑜𝑚𝑀𝑎𝑠𝑡𝑒𝑟 = (𝑡2 − 𝑡1) − 𝑀𝑒𝑎𝑛𝑃𝑎𝑡ℎ𝐷𝑒𝑙𝑎𝑦 (2.2)

Peer Delay Mechanism

In this mechanism of delay calculation, Sync and Folow_Up messages perform their roles
same as the end-to-end mechanism but instead of Delay_Req message, the Pdelay_Req,
and Pdelay_resp messages are exchanged. The main difference is that these messages are
sent to the port which is immediately connected. The connected port sends a reply in the
form of Pdely_Resp message, then node calculates the delay between two immediately

2. Literature Review 9

connected port to each other, due to this approach every port in the network must
support PTP protocol.

In presence of transparent clock, the delay between master and slave is calculated
by adding specific peer delay to the residence time of Transparent clock. So in the case
of any accidental change in network hierarchy network delay fluctuation can be handled
efficiently. [19] [11] [9]

Figure 2.3: PTP Peer delay Mechanism [11]

2.3.5 Protocol Hierarchy Establishment Mechanism
The protocol hierarchy is based on the master-slave relation of clocks. As a self-organizing
protocol, these states of the clock are determined by the BMCA (Best Master Clock
Algorithm), every ordinary (OC) and Boundary clock (BC) is equipped with BMCA.
The algorithm enables OC/BC to determine their states locally instead of negotiating
within a network to decide the clock state. [3]

For every clock, there are standard clock properties (Priority1, Class, Accuracy,
Variance, Priority 2 and Unique Identifier) are defined, which are used by the BMCA to
compute the state of clock [11]. These properties can be used to manipulate the behavior
of BMCA in order to assign the particular role to a specific clock. For example, as a
Grandmaster.

2. Literature Review 10

In PTP-1588-v1 [10], clock properties are advertised using Sync message but in
second version [11], properties are advertised using dedicated Announce message. A
clock, either explicitly configured (clock properties) as the best clock or consider itself
on the bases of BMCA as an eligible master clock, in both cases the clock advertises
its clock properties via sending announce message in the network. In case of failure of
master clock or recognition of another better clock in the network, then the master-state
associated messages (Sync and Announce) stops and another clock takes the role of best
master clock. [16]

Chapter 3

PTP Infrastructure in Linux

The journey of time synchronization begins with NTP (Network Time Protocol) and
David Mills is known as the father of NTP. Many of Mills purposed method for timekeep-
ing and synchronization of internal and external clocks can be seen in more advanced
and accurate time synchronization protocol like PTP. [15]

The first version of PTP was standardized in 2002, three years later Kendall Correll
introduced a first opensource software-only solution (ptpd) [13] for implementation of
PTP on Linux based systems. The solution became a base for further development in
this domain. Later in 2009, Patrick Ohly introduced hardware timestamping in Linux
kernel [7], Ohly then altered existing version of ptpd and extend his support for hard-
ware supported synchronization [14]. Although hardware timestamping mechanism was
already introduced in Linux kernel but there was no proper solution to control the
hardware clock. So, in 2010, Richard Cochran introduced PTP clock infrastructure in
Linux [7]. Later in 2011, Cochran presented the LinuxPTP tool for hardware and soft-
ware based time synchronization solution using hardware timestamping and PHC API
of Linux kernel [15]. These opensource solutions and Linux kernel support are playing
a vital role in the development and widespread use of this protocol. Many developer
and researchers are using and extending these tools to realize their concepts on different
platforms for intended applications.

3.1 Timestamping Mechanisms

3.1.1 Software Timestamping
Timestamps can be generated at different layers of a network, software timestamping
is most widely and easily available option. In software timestamping easiest way is to
copy the OS time at application level and merge it with the intended network packet.
Another way is to use SO_TIMESTAMP options of Linux kernel which is the most
widely exercised options in opensource implementations of PTP protocol.

11

3. PTP Infrastructure in Linux 12

Application

OS

MAC

PHY

Timestamp

Figure 3.1: Software Timestamping

The figure above reflects software timestamping process in contrast with network
layers. As the packets are timestamped at userspace using system time. Practically,
the system time is stored in memory, accessing memory/system time using normal
kernel routines results jitter which varies system to system and furthermore timestamped
packet still need to pass through other layers of the network in order to reach physical
channel of the network, which also causes some amount of error.

3.1.2 Hardware Timestamping
Hardware-based timestamping effectively reduces the jitter caused by OS level uncer-
tainties and reduces the error resulted by network layers hardware timestamping can
be either on MAC or PHY layer, it depends on the type of hardware. Linux network
stack supports hardware timestamping by using SO_TIMESTAMPING feature. In or-
der to use SO_TIMESTAMPING feature, first the device driver need to be configured
using Kernel SIOCSHWTSTAMP options through ioctl call. After successfully config-
uration user can enable and disable timestamping on outgoing/incoming messages by
using SO_TIMESTAMPING socket options. [7]

3. PTP Infrastructure in Linux 13

Application

OS

MAC

PHY

Timestamp

Figure 3.2: Hardware Timestamping

3.1.3 Linux kernel Support for Timestamping
There are different Linux socket interfaces for generating a timestamp for incoming/out-
going packets at different level of network stack. The following are the currently available
options. [18]

SO_TIMESTAMP :

The kernel option timestamps incoming network traffic by using Linux system time.
Resolution of the timestamp is in microseconds.

SO_TIMESTAMPNS :

This timestamp generation mechanism is similar to previous option but when the times-
tamping information is retrieved using recvmsg() function, regarding information is sent
back via timespec struct in nano second resolution.

SO_TIMESTAMPING :

This kernel socket option supports multiple types of timestamp request including hard-
ware timestamping. The option enables to generate the timestamp on incoming and
outgoing packets.

Following are the available parameters for configuring SO_TIMESTAMPING op-
tion for timestamp generation.

• SOF_TIMESTAMPING_RX_HARDWARE
• SOF_TIMESTAMPING_RX_SOFTWARE

3. PTP Infrastructure in Linux 14

• SOF_TIMESTAMPING_TX_HARDWARE
• SOF_TIMESTAMPING_TX_SOFTWARE
• SOF_TIMESTAMPING_TX_SCHED
• SOF_TIMESTAMPING_TX_ACK

Following are the available parameters for configuring SO_TIMESTAMPING option
for timestamp reporting.

• SOF_TIMESTAMPING_SOFTWARE
• SOF_TIMESTAMPING_SYS_HARDWARE
• SOF_TIMESTAMPING_RAW_HARDWARE

Furthermore, the detailed operational and implementation level information can be
found in related kernel documentation. [18] v Additionally, regarding hardware times-
tamping SO_TIMESTAMPING option was first introduced by Patrick Ohly 02/2009
and then adopted in 2.6.30 version of Kernel, before that options SO_TIMESTAMP
and SO_TIMESTAMPNS was used for timestamping of packets but these interfaces
only provide the option to timestamp packets at software/application level. [7] [14]

.

3.2 PTP Clock Infrastructure and Control API

The first open source PTP solution (ptpd) was released in May 2005, which supports
software only PTP implementation. Although many attempts are made to integrate
PTP hardware support by using Linux ioct procedures and adding many pre-processor
commands in the software-only solution of Kendall Correll’s, which made existing code
more unsuitable for support of multiple hardware [7]. After the official integration of
hardware timestamping, which was proposed by Patrick Ohly, there was no PHC clock
infrastructure in the Linux although Ohly proposed two concepts (Assisted system Time
and Two-level PTP) for the synchronization of system clock with PHC in his publication
[14] but there was no efficient mechanism was proposed to control the PHC clock[7].
In order to overcome these problems, In 2010 Richard Cochran introduce a PTP clock
infrastructure, which was then integrated to Kernel version: 3.0. The solution includes
the PTP hardware clock (PHC) drivers architecture and a standard mechanism in form
of API to control PHC.

3. PTP Infrastructure in Linux 15

Clock Driver

Class Driver

Clock Driver

ApplicationApplication

Character Device

Kernel space

User space

Figure 3.3: PTP Infrastructure in Linux [7]

The above figure shows the clock infrastructure, where the class drivers covers the
more generalized features and specific clock need to provide the clock driver which covers
the hardware aspects of specific clock. The specific clock has to register their clock driver
with the class driver which will generate the Character device, the Character device will
be accessible to userspace via PHC userspace API.

The main purpose of developing Linux Kernel API was to minimize the effort to
develop the driver for different devices. So, Class drivers do many generalized tasks for
all clock drivers like creation of character device, validation of ioct calls and management
of the timestamped event ordering. The approach which is used to control the PHC is
quite similar as NTP timer model which also reduce effort in development. [7]

Figure 3.4: PHC API features [7]

The table above shows the clock operations and their comparison with NTP timer
equivalent. As these ioctl names are reflecting their function like GETCAPS is used to
get the PHC capabilities and ADJFREQ ioctl is used to adjust the clock frequency by
ppb parameter. [7]

Chapter 4

Design and Implementation

In order to implement the PTP protocol on Linux based SoC platform, we chose Linux-
PTP, a most reliable opensource PTP implementation for UNIX like operating systems.
Although there is another solution (PTPd) available which also claims hardware times-
tamping and PHC control based implementation, due lack of compatibility for multiple
hardware, we preferred to use linuxPTP which is compatible for chosen hardware plat-
form (Beaglebone Black) and easily extendable to implement the additional features.
For hardware platform, Beaglebone is chosen due to its support for hardware-based
timestamping for PTP protocol and wide acceptance in the opensource community as
reference implementation platform. For performance analysis of PTP protocol on se-
lected hardware-software combination, stess-ng tool and iperf are used to put some
stress on reference implementation platform in different dimensions (CPU, Network).
Data collected during this process is then cleaned and imported to MATLAB workspace,
where data is represented in bar-charts and graphs.

4.1 Tools and technologies

4.1.1 LinuxPTP
LinuxPTP was introduced by Richard Cochran[15] in 2011 after integration of PHC
API in Linux mainline kernel. There was two synchronization mechanism purposed by
Patrick Ohly[14] to synchronize the system and PHC clock. The LinuxPTP solution
closely resembles to the second method which is "Two-Level PTP", on the other hand,
the first method is considered to be inefficient for proper synchronization [15].

As shown in diagram 4.1, the packets from the master node first arrives at PTP
HW Clock, where according to configuration and timestamping capabilities the packets
are timestamped, the timestamped packets are accessible to PTP stack via SOTIMES-
TAMPING Linux socket options. In next step, the PTP stack calculates the correction
and adjust the Hardware clock via Standard POSIX commands. As the PHC subsystem
is dependent on the PPS subsystem for the synchronization of system time, So, PPS
signal is timestamped by the system using ISR routine and then made accessible to
userspace via standard PPS interface of NTP. [15]

16

4. Design and Implementation 17

Figure 4.1: PTP Clock based Time Synchronization in Linux [15]

The LinuxPTP project yields multiple executable files in order to establish the whole
two-step synchronization mechanism.

ptp4l:

The ptp4l tool synchronizes (by default) PHC clock with master clock in network. If
the system does not have PHC then it synchronizes the system clock with a master
clock using software timestamping, in this case, there is no need of phy2sys tool. For
configuration, there is a default configuration file is provided, where the default behavior
of the tool can be changed. For customized configuration, a new configuration file can
be made in a standard way, which can be passed to the tool via proper command line
argument.

pmc:

The pmc is the realization of PTP management client as defined in the standard. The
tool is used to get the extra information from the network like identity, pathdelay,
accuracy and other. The commands from pmc are transferred to all the clients but
there are options to give a targeted command in the network.

4. Design and Implementation 18

phy2sys:

The phc2sys tool synchronizes Linux system clock to the PHC. In whole process the the
phc2sys is synchronized with ptp4l, where system clock act as slave and PHC plays a
role of master clock.

Linux Based SoC Platform

Linux System

PHC System Clock

phy2sys

Master Clock
Node

ptp4l
M M

SS

Figure 4.2: LinuxPTP based Hardware Assisted Time Synchronization

4.1.2 PTPd
PTPd is the one of first opensource implementation of IEEE-1588 protocol for UNIX
like operating system. The first version of PTPd only supports software timestamping.
Later, PTPd also adopted hardware timestamping and PHC API.

4.1.3 stress-ng
stress-ng is a tool to perform the different stress test on Linux system in a scalable way.
Test includes I/O stress, CPU, and Network load.

4.1.4 iPerf
iPerf is a cross-platform tool, the tool is used for network performance measurements.
In this project, iPref is used to create the UDP stream with specified bandwidth on es-
tablished PTP network for performance analysis of PTP implementation under scalable
network load.

4.1.5 Matlab
Matrix Laboratory (Matlab) is a complete set of tools. Matlab includes IDE (Integrated
Development Environment), programming language and libraries. Matlab is used for
creating models, develop algorithms and for analyzing data. In this project, the Matlab
is used only for data preparation and representation of data.

4.1.6 Beaglebone Black
Beaglebone (BBB) is an opensource development board, equipped with TI M335X Sitara
ARM Cortex-A8 process. Beside common interfaces (I2C, SPI, UART, USB), it also
supports specialize industrial protocol (CAN, PROFIBUS, PORFINET, PTP-1588).

4. Design and Implementation 19

The capabilities of platform can be extended further with CAPES (capes are broads
extensions with additional features). The main reason for selecting this platform is for
its supports to hardware based timestamping though the MAC layer.

4.2 Design Consideration and System Hierarchy
Flexibility is one of the forefront features of the PTP protocol and it is optional to use all
PTP supported network components, the network components includes routers/switch.
Although the BBB device provides the hardware support but the used network router
(TP-Link TL-WR940N N450) does not provide PTP support. So, the maximum ac-
curacy and the precision is not guaranteed. On the other hand, only end-to-end delay
calculation mechanism is exercised.

The following diagram shows the architecture of the test environment.

Router
Master
Clock

Slave

Slave

Slave

Figure 4.3: Architecture of Test Environment

https://www.tp-link.com/us/products/details/cat-9_TL-WR940N.html#specifications

Chapter 5

Test and Measurements

In order to establish PTP network for software and hardware based timestamping so-
lutions, there are necessary tools and configuration need to be installed and configured.
There are different ways to install and configure environment for PTP network.

First, it is needed to know the capabilities of the hardware, either the clock nodes
support hardware-assisted time synchronization or not. Timestamping capabilities in
Linux kernel version 3.4 or later can be checked through Kernel ETHTOOL_GET
_TS_INFO ioctl calls. Ethtool is a Linux based tool give the ability to inquire the
timestamping capabilities of the hardware. Following is a snapshot of the of Linux ter-
minal output showing timestamping capabilities of selected SoC platform (Beaglebone),
which is retrieved using Ethtool.

Figure 5.1: Timestamping Capabilities of Beaglebone

The above figure reflects the hardware timestamping support of Beaglebone. In order

20

5. Test and Measurements 21

to utilize this hardware assistance following Kernel option should be enabled.
1 CONFIG_PPS
2 PTP_1588_CLOCK

There are two ways to get a Linux kernel with enabled above options. First, compile
a customized kernel with desired kernel options. Second, obtain a pre-compiled kernel
for selected hardware with required configuration. Although, obtaining a pre-compiled
kernel is the easiest way to establish a hardware-assisted PTP setup but most of the
time pre-compiled kernel is shipped with many generalized modules and desktop en-
vironments, which may not necessary for intended applications and sometimes these
additional unnecessary components of the kernel and root file systems impose consid-
erable amount of extra stress on the system, which further leads to uncertainty in of
whole synchronization process. On the other hand, compiling the customized kernel
using conventional way is not always a favourite option. So, instead we can use the
Yocto project, for building a customized Linux system image including bootloaders and
root file system. Yocto project is an opensource solution for building customized kernel
for embedded systems. Yocto project uses Beaglebone as a reference platform. In Ap-
pendix B, the procedure to build the Linux kernel and porting pre-compiled kernel in
Beaglebone is briefly described.

5.1 Test Case Scenarios
After installing and configuring necessary tools and software, which includes enabling
the Linux kernel for hardware-based PTP support and installing LinuxPTP, stress-ng
and iPerf tools. The SoC-based clock nodes are ready to establish PTP network for test
and measurement purpose.

Regarding test case scenarios, first, pure software-based network is established and
results are collected through standard logging. In next section the results from pure
hardware based solution are collected, after that, a comparison between the software
and hardware-based solution is drawn in the context of offset from master clock and
precision of synchronization process. In following sections, there are some CPU, I/O
and network-based stress tests are conducted on hardware-assisted time synchronization
implementation.

In order to present the results in a coherent form, data fitting process with default
Smoothing Splines model from Matlab tool is used. In some graphs, we found possible
and necessary to present the actual data points parallelly. So, where ever the Data is
shown in the description window of the graph, it shows the actual data of respective
slave.

5.1.1 Software Timestamping
In software timestamping based test scenario, there is no special need for kernel configu-
ration. In software-based scenario, network hierarchy is established using one Beaglebone
device acting as a master clock and three Beaglebone devices acting as slave clocks in
LAN based network. The network is established using a low-end home router, which is
unaware of PTP hierarchy. Due to unsupported network components, end-to-end delay
computation mechanism of the PTP protocol is exercised.

5. Test and Measurements 22

Time (sec)

0 1000 2000 3000 4000 5000 6000 7000

O
ff

s
e

t
fr

o
m

 M
a

s
te

r
c
lo

c
k
 (

n
s
)

-800.000

-600.000

-400.000

-200.000

0

200.000

400.000

600.000

800.000

Slave 1

Slave 2

Slave 3

Figure 5.2: Software Timestamping based Time Synchronization I

Time (sec)

3000 3010 3020 3030 3040 3050 3060 3070 3080 3090 3100

O
ff

s
e

t
fr

o
m

 M
a

s
te

r
c
lo

c
k
 (

n
s
)

×105

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.9

1.2

1.5

1.8

Slave 1

Slave 2

Slave 3

Figure 5.3: Software Timestamping based Time Synchronization II

5. Test and Measurements 23

The figure 5.2 shows the offsets of slave clocks over the span of approximately two
hours, where the drift of slave clocks are up to 2ms and it can also be seen that clocks
are showing uncertain behavior. Overall the offsets are between ± 0.5ms but due to
unknown error, there are sudden changes in offset in all clocks, which may be the result
of a change in speed of the clock. If we take a closer look at the relatively stable part
of test duration, which is highlighted by a rectangular shape in figure 5.2.

The figure 5.3 is drawn on the basis of data taken from stable synchronization
span of the figure 5.2. In this graph, only first 100 samples of data are considered,
in order to visualize the results more clearly. During whole span (approx 15 min) of
synchronization, the offset remained under 300 microseconds.

Offset from Master Clock (ns)

-200.000 -150.000 -100.000 -50.000 0 50.000 100.000 150.000 200.000

N
u
m

b
e
r

 o
f
S

a
m

p
le

s

0

100

200

300

400

500

600

700

Slave1

Slave 2

Slave 3

Figure 5.4: Precision of Software based PTP Implementations

The figure above shows the precision of clocks, where the number of samples by
specific clock are plotted between the range of -200us to 200us. It can be seen that slave
1 have relatively better precision as compare to other slaves clocks, where the offset
fluctuation can clearly be seen.

5.1.2 Hardware Timestamping
The graph below shows the synchronization of slave clocks over the period of twelve
hours. The synchronization period is divided into two parts. In the first part, the syn-

5. Test and Measurements 24

chronization network consists of three slaves and one master clock, performing their
roles for approximately 1.3 hours and in the second part of synchronization period, two
slaves are removed from network in order to analyze the behavior of synchronization
process with fewer slaves communicating with the master clock. It can be seen that after
removing slaves form network, results form remaining slaves are relatively stable and
also remained stable for long period of time.

Time (sec)

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.000

O
ff

s
e

t
fr

o
m

 M
a

s
te

r
C

lo
c
k
 (

n
s
)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Slave 1

Slave 2

Slave 3

Figure 5.5: Hardware Timestamping based Time Synchronization

The graph 5.6 shows the magnified version of first half of the previous figure where
three slaves are active in PTP network and continuously synchronizing their time with
master clock by every second and the accuracy of slave clocks is between ± 250ns.

5. Test and Measurements 25

Time (sec)

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100

O
ff
s
e
t

fr
o

m
 M

a
s
te

r
C

lo
c
k
 (

n
s
)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Slave 1

Slave 2

Slave 3

Figure 5.6: Hardware Timestamping based Time Synchronization (Multiple Slaves)

Time (sec)

8000 8010 8020 8030 8040 8050 8060 8070 8080 8090 8100

O
ff
s
e

t
fr

o
m

 M
a

s
te

r
C

lo
c
k
 (

n
s
)

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

Data

Slave 3

Figure 5.7: Hardware Timestamping based Time Synchronization (Single Slave)

5. Test and Measurements 26

The graph 5.7 reflects second half of the figure 5.5, where only one slave is correcting
their offset with one master clock and other two slaves are removed from the network. It
can be clearly seen that the results are remarkable with fewer slave devices in a network.
The offset is fluctuating between the -50 to 50 ns, which is the highest accuracy achieved
during all kind of test scenarios.

Offset from Master Clock (ns)

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

N
u
m

b
e
r

o
f
S

a
m

p
e
ls

0

50

100

150

200

250

Slave 1

Slave 2

Slave 3

Figure 5.8: Precision of Hardware based PTP Implementation

The stability of clock can be noticed from above bar chart, in most of the results the
offset is between ± 400ns, with four PTP devices connected via LAN network. On the
other hand, almost all slave clock have similar precision unlike software timestamping
base PTP network, where all slave clocks have different behavior in whole test case
duration with similar configuration and environment.

5.1.3 Comparison of Software and Hardware based Synchronization
The previous sections shows that the hardware and software based synchronization not
only differ in offset from the master but also in precision. It can be seen in following
graph, after plotting software and hardware-based measurements on the same graph it
is hard to distinguish that whether hardware timestamping is equal to zero or not.

5. Test and Measurements 27

Time(sec)

0 50 100 150 200 250 300 350 400 450 500 550

O
ff
s
e
t
fr

o
m

 M
a
s
te

r
c
lo

c
k
 (

n
s
)

-60.000

-50.000

-40.000

-30.000

-20.000

-10.000

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

Slave Clock (Sw)

Slave Clock (Hw)

Figure 5.9: Comparison of Software and Hardware based Synchronization

5.1.4 Hardware Assisted Time Synchronization under CPU Load
It was expected that the hardware-assisted time synchronization will not have the promi-
nent effect of CPU stress on the accuracy because the PTP messages are time-stamped
at MAC/PHY layer. The graph 5.10 compares the three slave with simulated CPU
load by using the stress-ng tool. The slave 1 shows the normal synchronization period,
slave 2 device is stressed using stress-ng with 50% utilization parallel to synchronization
process and similarly, slave 3 is stressed with 100% CPU utilization. In this test case,
no considerable change in the behavior of devices are noticed, all the slave offsets are
fluctuating between -300 to 300 nanoseconds.

5. Test and Measurements 28

Time (sec)

0 10 20 30 40 50 60 70 80 90 100

O
ff
s
e
t
fr

o
m

 M
a
s
te

r
C

lo
c
k
 (

n
s
)

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Slave 1

Slave 2 (50%)

Slave 3 (100%)

Figure 5.10: Hardware Assisted Time Synchronization under CPU Load

Offset from Master Clock (ns)

-1500 -1000 -500 0 500 1000 1500

N
u
m

b
e
r

S
a
m

p
e
ls

0

50

100

150

200

250

300

350

400

Slave 1

Slave 2 (50%)

Figure 5.11: Precision of Hardware Assisted Time Synchronization under CPU Load

We have tried to find out possible effects on the precision but there is no consid-

5. Test and Measurements 29

erable change found in the precision of the synchronization. The figure 5.11 shows the
comparison of two slaves, slave 1 is not experiencing any simulated load and slave 2 is
stressed via 50% of CPU utilization. There is little change visible in the precision of
clocks but this observation goes wrongs, when we compare it with 100% load, because
with 100% load scenario there is no change found. So, it is concluded that there is no
change observed in the precision of clock in current type of network hierarchy and envi-
ronment. It is expected, there might be considerable effects in more stable PTP network
hierarchy.

5.1.5 Hardware Assisted Time Synchronization under I/O Load
In order to perform I/O based test case scenario, I/O load type from stress-ng is used,
which issues many tiny synchronous I/O reads and writes on a temporary file by utilizing
Linux POSIX aio interface. In this case, there is no considerable change is found in
accuracy and precision. The figure 5.12 shows the result, where both slaves (with and
without load), are having the same accuracy.

Time (sec)

0 20 40 60 80 100 120 140 160 180 200

O
ff
s
e
t
fr

o
m

 M
a
s
te

r
C

lo
c
k
 (

n
s
)

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Slave 1

Slave 2 (I/O Load)

Figure 5.12: Hardware Assisted Time Synchronization under I/O Load

5. Test and Measurements 30

5.1.6 Hardware Assisted Time Synchronization under Network Load
The effects of network-based load highly depend on the type of switches and routers are
used in network. In this project, the network components used to connect the slaves and
master clock is not PTP supported. So, we need to considered that the results shown
here can be different if more advanced networking devices will be used.

In order to simulate the network load, an extra Linux based device is connected
to the same network and iPerf tool is used to create a multicast stream with specified
bandwidth.

Additionally, in graph 5.13 and 5.16, the absolute value of data is considered in order
to avoid the entanglement.

Time (sec)

0 5 10 15 20 25 30 35 40 45 50

O
ff
s
e
t

fr
o
m

 M
a
s
te

r
c
lo

c
k
 (

n
s
)

×104

-2

0

2

4

6

8

10

12

14

16

18

Slave 1

Slave 2 (1Mb)

Slave 3 (5Mb)

Slave 4 (10Mb)

Slave 5 (20Mb)

Slave 6 (50Mb)

Figure 5.13: Hardware Assisted Time Synchronization under Network Load

The figure 5.13 shows, slaves and their respective master clock expose to network
traffic between the range of 0Mb to 50Mb. It can be seen that, as the amount of the
network traffic grows the offset from the master clock also rises. let assume that the
0-5Mb network load comes under the category of Low network load and 10-50Mb is the
High load. First, we inspect the accuracy and precision in low network traffic and then
High network traffic.

5. Test and Measurements 31

Time (sec)

0 5 10 15 20 25 30 35 40 45 50

O
ff

s
e

t
fr

o
m

 M
a

s
te

r
c
lo

c
k
 (

n
s
)

-30.000

-25.000

-20.000

-15.000

-10.000

-5.000

0

5.000

10.000

15.000

20.000

25.000

30.000

Slave 1

Slave 2 (1Mb)

Slave 3 (5 Mb)

Figure 5.14: Hardware Assisted Time Synchronization under Network Load (Low)

Offset from Master Clock (ns)

-30.000 -25.000 -20.000 -15.000 -10.000 -5.000 0 5.000 10.000 15.000 20.000 25.000 30.000

N
u
m

b
e
r

o
f
S

a
m

p
e
ls

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Slave 1 (1 Mb)

Slave 2 (5 Mb)

Figure 5.15: Precision of Hardware Assisted Time Synchronization under Network Load
(Low)

The figure 5.14 shows the offset calculations of slaves under low network load. During

5. Test and Measurements 32

synchronization period of slave 1, there was no extra network traffic and the accuracy
was around ± 200 ns. On the other hand, while applying simulated network traffic of
1Mb and 5Mb on slave 2 and slave 3 the offset was remarkably advanced up-to ± 5us
and ± 15us respectively.

The precision of both slave clocks is also dissimilar, as it can be seen in figure 5.15
where slave 1 exposed to 1Mb of network traffics, most to the time offset was between the
normal range as compare to slave with network load but there are some measurements
where offset went up to ± 5000 ns. On the other hand, the slave with 5 Mb network
traffic is having very low precision and very uncertain behavior, where the measurement
samples are spread over the range of - 30000 to 30000 ns.

Time (sec)

0 5 10 15 20 25 30 35 40 45 50

O
ff
s
e
t

fr
o
m

 M
a
s
te

r
c
lo

c
k
 (

n
s
)

×104

-2

0

2

4

6

8

10

12

14

16

18

Slave 4 (10Mb)

Slave 5 (20Mb)

Slave 6 (50Mb)

Figure 5.16: Hardware Assisted Time Synchronization under Network Load (High)

In graph 5.16, three slaves are experiencing high network traffic, where the accuracy
is reached similar to software timestamping based solution. The slave 4-5 which are
having 10Mb and 20Mb of network traffic load, the offsets of these clocks reached up to
± 40000ns. On the other hand slave with 50Mb of network traffic have worst accuracy.

5. Test and Measurements 33

Offset from Master Clock (ns)

-150.000 -120.000 -90.000 -60.000 -30.000 0 30.000 60.000 90.000 120.000 150.000

N
u

m
b

e
r

o
f

S
a

m
p

e
ls

0

200

400

600

800

1000

1200

Slave 1 (10 Mb)

Slave 2 (20 Mb)

Slave 3 (50 Mb)

Figure 5.17: Precision of Hardware Assisted Time Synchronization under Network Load
(High)

The graph above confirms that, as the bandwidth consumption’s of UDP stream
increases, the accuracy and precision of the clocks decreases.

Chapter 6

Conclusion

In software-based PTP synchronization network, the average offset of slave clocks re-
mained between ± 0.5ms, but there are some timespans where the offset of clocks
reached to 2ms with multi-slave synchronization model. Beside offset, the precision of
slave clocks was also dissimilar with same configuration and communication medium.

In hardware timestamping based PTP implementations, the long-term results were
very promising, where the accuracy of clock reached to approx 50ns. Overall in short-
term measurements and random test cases, the accuracy of 200ns was frequently achieved.
It is also observed that in a multi-slave synchronization scenario, the slaves showed sim-
ilar behavior in term of accuracy and precision.

The tests with CPU and I/O based load do not show any prominent change in accu-
racy of the clock on hardware-based solution. There are also chances that the changes
remained undetected due to smaller in scale. On the other hand, the test case scenarios
with alien network traffic showed striking results, where the accuracy went to the low-
est standard as compare other test case scenario including software timestamping based
solutions.

Overall, the difference between the hardware and software based timestamping was
significant. In load case scenarios, apparently network traffic based tests showed some
considerable effect. Expected effects from the CPU and I/O based tests, either did not
appear or we remained unable to detect them.

In order to regenerate results for further analysis or to setup a PTP hardware assisted
environment, the data form all tests case scenarios with a brief description is made
available, some of the tests are almost similar with little configuration change. A brief
guide to setup the PTP network is also made available in appendix section.

6.1 Improvements and Future Work
The tools used to simulate particular kind of load on PTP environment does not reflect
any real-world patterns of the load and it is possible with applying real-world resource
exhausting application may show the different results. For example, there can be dif-
ferent types of network traffics that might affect the PTP setup in a totally different
manner.

As discussed in earlier sections, the network component used in the PTP hierarchy

34

6. Conclusion 35

establishment are unaware of PTP network, and there can be undetected effects on PTP
network. Further study can be done in this area by comparing the results with PTP
supported network component. The results of simulated load based test case scenar-
ios are only from hardware assisted PTP solution, there might be different results in
software-based solution.

Appendix A

Appendix: Technical Details

Beaglebone Black
Following two figures shows the specifications of Beagleboard family device which is
used as test-bed in the project.

Figure A.1: Beaglebone Black Key Components

36

A. Appendix: Technical Details 37

Figure A.2: Beaglebone Black Features

Source of figures (A1.1 and A1.2) : https://elinux.org/Beagleboard:BeagleBoneBlack

https://elinux.org/Beagleboard:BeagleBoneBlack

Appendix B

Appendix: Installation Guide

In order to establish test environment, there is need for a Linux kernel image with
required configuration for enabling hardware timestamping. Following are the Linux
kernel options need to be enabled for the support of hardware timestamping.

1 CONFIG_PPS
2 CONFIG_NETWORK_PHY_TIMESTAMPING (Only required for Timestamping in PHY)
3 PTP_1588_CLOCK

There are two prominent ways to get the Linux kernel with these options enabled. First,
download pre-compiled kernel, rootfs (Root file system) and bootloaders from a suitable
resource and write these components on a SDcard, then boot device form memory card.
Second, cross-compile a customized kernel and bootloader on a host machine, create a
root file system with required modules and then finally write these components on the
memory card in a standard manner.

Pre-Compiled kernel

The beagleboard community provides extensive support in development from beginner
level to advanced. There are different type of Beaglebone firmware image packages
available on their website (https://beagleboard.org/latest-images) with a detailed guide
to port images in Beaglebone black. In most of the images, the configurations required
for PTP support are already enabled.

Compiling Linux Kernel

There are different ways to compile a kernel. Instead of compiling boot-loader and kernel
separately and then generating root file system in a conventional way, we recommend
to use the Yocto Project. The project provides an open-source platform to build a
customized kernel, bootloaders and root file system for multiple hardware architectures.
The further details can be found under official documentations [20]. Following are the
abstract level steps to build kernel image using Yocto Project.

Cloning Poky, Openembedded and other layers repositories.

38

https://beagleboard.org/latest-images

B. Appendix: Installation Guide 39

1 git clone git://git.yoctoproject.org/poky.git poky-rocko
2 git clone git://git.openembedded.org/meta-openembedded
3 git clone git://github.com/jumpnow/meta-bbb

Initializing Build Environment using provided script

1 mudassar@HP-250-G4-Notebook-PC:~$ source poky-rocko/oe-init-build-env bbb/
2 You had no conf/local.conf file. This configuration file has therefore been
3 created for you with some default values. You may wish to edit it to, for
4 example, select a different MACHINE (target hardware). See conf/local.conf
5 for more information as common configuration options are commented.
6
7 You had no conf/bblayers.conf file. This configuration file has therefore been
8 created for you with some default values. To add additional metadata layers
9 into your configuration please add entries to conf/bblayers.conf.

10
11 The Yocto Project has extensive documentation about OE including a reference
12 manual which can be found at:
13 http://yoctoproject.org/documentation
14
15 For more information about OpenEmbedded see their website:
16 http://www.openembedded.org/
17
18
19 ### Shell environment set up for builds. ###
20
21 You can now run 'bitbake <target>'
22
23 Common targets are:
24 core-image-minimal
25 core-image-sato
26 meta-toolchain
27 meta-ide-support
28
29 You can also run generated qemu images with a command like 'runqemu qemux86'
30
31

Configuration Files

There will be two main files, containing layer and machine configuring bblayers.conf
local.conf. In bblayers.conf file looks like follows, where paths of inter-depended layers
are provided, these dependencies changes according to requirements. In local.conf file
the architecture and build process level configurations are defined.

B. Appendix: Installation Guide 40

Initializing Build Process

The build process will take couple of hours to complete in the first time and it also
depends on the specification of host system and speed of internet connection. Following
console output reflects the environment during the build process.

1 mudassar@HP-250-G4-Notebook-PC:~/bbb$ MACHINE=beaglebone bitbake core-image-full-
cmdline

2 Parsing recipes: 100% |####################################| Time: 0:01:37
3 Parsing of 820 .bb files complete (0 cached, 820 parsed). 1279 targets, 60 skipped,

0 masked, 0 errors.
4 NOTE: Resolving any missing task queue dependencies
5
6 Build Configuration:
7 BB_VERSION = "1.36.0"
8 BUILD_SYS = "x86_64-linux"
9 NATIVELSBSTRING = "universal"

10 TARGET_SYS = "arm-poky-linux-gnueabi"
11 MACHINE = "beaglebone"
12 DISTRO = "poky"
13 DISTRO_VERSION = "2.4.2"
14 TUNE_FEATURES = "arm armv7a vfp neon callconvention-hard cortexa8"
15 TARGET_FPU = "hard"
16 meta
17 meta-poky
18 meta-yocto-bsp = "rocko:1648bcafa3d0e46acee61a34d0a07fabb85b1f8d"
19
20 Initialising tasks: 100% |####################################| Time: 0:00:11
21 NOTE: Executing SetScene Tasks

After completing of the build process, the build directory will look like following, where
all the compiled and downloaded modules are saved. So, the next build will no take
much time.

1
2 mudassar@HP-250-G4-Notebook-PC:~/bbb$ tree -L 1 build/
3 build/
4 bitbake-cookerdaemon.log
5 cache
6 conf
7 downloads
8 sstate-cache
9 tmp

10
11

Build Image Directory

Following sanpshorts shows the view of Build Image directory, where couple of files are
generated. The most important are

B. Appendix: Installation Guide 41

MLO: Second stage bootloader (SPL)
u-boot.img: Third stage bootloader
console-image-beaglebone.rootfs.tar.xz: Root file system which also includ the ker-
nel (zImage)

Figure B.1: Output of Yocto build

SDcard based Linux Image for Beaglebone Black

There is a standard partition pattern is defined to entertain the multistage boot process
of Beaglebone. There are two partitions are required first, boot partition (FAT file
system), where both bootloaders (MLO and u-boot) are placed and the second root
partition for root file system and kernel.

Creating Partitions

There are many scripts available to make partitions for BBB device. By using fdisk
utility one can utilize the extra space of memory card and make more partitions other
than necessary. Following snapshot show the process to make required partitions.

1 mudassar@HP-250-G4-Notebook-PC:~$ sudo fdisk /dev/sdd
2 [sudo] password for mudassar:
3
4 Welcome to fdisk (util-linux 2.27.1).
5 Changes will remain in memory only, until you decide to write them.
6 Be careful before using the write command.
7
8

B. Appendix: Installation Guide 42

9 Command (m for help): o
10 Created a new DOS disklabel with disk identifier 0xb017558e.
11
12 Command (m for help): p
13 Disk /dev/sdd: 14,8 GiB, 15833497600 bytes, 30924800 sectors
14 Units: sectors of 1 * 512 = 512 bytes
15 Sector size (logical/physical): 512 bytes / 512 bytes
16 I/O size (minimum/optimal): 512 bytes / 512 bytes
17 Disklabel type: dos
18 Disk identifier: 0xb017558e
19
20 Command (m for help): n
21 Partition type
22 p primary (0 primary, 0 extended, 4 free)
23 e extended (container for logical partitions)
24 Select (default p): p
25 Partition number (1-4, default 1): 1
26 First sector (2048-30924799, default 2048):
27 Last sector, +sectors or +size{K,M,G,T,P} (2048-30924799, default 30924799): +72261K
28
29 Created a new partition 1 of type 'Linux' and of size 71 MiB.
30
31 Command (m for help): t
32 Selected partition 1
33 Partition type (type L to list all types): c
34 Changed type of partition 'Linux' to 'W95 FAT32 (LBA)'.
35
36 Command (m for help): a
37 Selected partition 1
38 The bootable flag on partition 1 is enabled now.
39
40 Command (m for help): n
41 Partition type
42 p primary (1 primary, 0 extended, 3 free)
43 e extended (container for logical partitions)
44 Select (default p): p
45 Partition number (2-4, default 2): 2
46 First sector (147456-30924799, default 147456):
47 Last sector, +sectors or +size{K,M,G,T,P} (147456-30924799, default 30924799):
48
49 Created a new partition 2 of type 'Linux' and of size 14,7 GiB.
50
51 Command (m for help): p
52 Disk /dev/sdd: 14,8 GiB, 15833497600 bytes, 30924800 sectors
53 Units: sectors of 1 * 512 = 512 bytes
54 Sector size (logical/physical): 512 bytes / 512 bytes
55 I/O size (minimum/optimal): 512 bytes / 512 bytes
56 Disklabel type: dos
57 Disk identifier: 0xb017558e
58
59 Device Boot Start End Sectors Size Id Type
60 /dev/sdd1 * 2048 147455 145408 71M c W95 FAT32 (LBA)
61 /dev/sdd2 147456 30924799 30777344 14,7G 83 Linux

B. Appendix: Installation Guide 43

Formatting Partitions

1 mkfs.vfat -F 16 -n "boot" /dev/sdd1
2 mke2fs -j -L "root" /dev/sdd2

Mounting Partitions

1 mkdir /mnt/sdd1
2 mkdir /mnt/sdd2
3 mount /dev/sdd1 /mnt/sdd1
4 mount /dev/sdd2 /mnt/sd2

Copying Bootloaders in First Boot Partition

1 cp MLO-beaglebone /mnt/sdd1/MLO
2 cp u-boot-beaglebone.img /mnt/sdd1/u-boot.img

Extracting Root File System in Second Root Partition

1 tar x -C /mnt/sdd2 -f console-image-beaglebone.tar.gz

Unmounting Partitions

1 umount /mnt/sdd1
2 umount /mnt/sdd2

Appendix C

Appendix: Additional Tests and
Measurements

There were multiple test conducted during this study but not all of them are discussed
and presented in the report.However, the data from all tests are made available after
preparing in form of MATLAB workspace file. One can regenerate the graphs and also
further investigate other tests which are not the part of this report. The table C1, C2
and C3 shows test and the abstract level configuration during test.

Test Name ID Demon Config Timestamping mode Remarks

Message Frequency Filter 1 Filter 2

3*Pure Software pure_Sw_offset_100 1 Sofware

pure_Sw_offset_101 1 Software

pure_Sw_offset_106 1 Software

3*Pure Harware pure_Hw_offset_100 1 HW

pure_Hw_offset_101 1 HW

pure_Hw_offset_106 1 HW

Table C.1: Multi-Slave Test

44

C. Appendix: Additional Tests and Measurements 45

Test ID PTP Demon Config Stress Test Config Load distribution Remarks

Message Frequency Filter 1 Filter 2 Load type Intensity

HwT1.1 1 Slave: HW , Master: SW

HwT1.2 1 Slave: SW , Master: HW

HwT1.3 1 Slave: HW , Master: HW

HwT1.4 8

HwT1.5 8 log data: phc2sys + ptp4l

HwT1.6 8 log data: phc2sys

HwT1.7 8 log data: phc2sys + ptp4l

HwT1.8 8 CPU 50 Slave Only

HwT1.9 8 CPU 50 Both

HwT1.10 8 CPU 100 Slave Only

HwT1.11 8 CPU 100 Both

HwT1.12 8 I/O – Slave Only

HwT1.13 8 I/O – Both

HwT1.14 8 CPU 100 Slave Only log data: phc2sys + ptp4l

HwT1.15 8 CPU 100 Both log data: phc2sys + ptp4l

HwT1.16 8 I/O – Slave Only log data: phc2sys + ptp4l

HwT1.17 8 I/O – Both log data: phc2sys + ptp4l

HwT1.18 8 Network 1Mb Source: Alien

HwT1.19 8 Network 5Mb Source: Alien

HwT1.20 8 Network 10Mb Source: Alien

HwT1.21 8 Network 20Mb Source: Alien

HwT1.22 8 Network 50Mb Source: Alien

Table C.2: Harware Timestamping Test

C. Appendix: Additional Tests and Measurements 46

Test ID PTP Demon Config Stress Test Config Load distribution Remarks

Message Frequency Filter 1 Filter 2 Load type Intensity

SwT1.1 1 raw

SwT1.2 1 raw moving𝑚𝑒𝑑𝑖𝑢𝑚

SwT1.3 1 filter

SwT1.4 8 filter

SwT1.5 8 raw

SwT1.6 8 filter𝑤𝑒𝑖𝑔ℎ𝑡

SwT1.7 8 filter𝑤𝑒𝑖𝑔ℎ𝑡

SwT1.8 8 filter𝑤𝑒𝑖𝑔ℎ𝑡 moving𝑎𝑣𝑒𝑟𝑎𝑔𝑒

SwT1.9 8 filter CPU 50

SwT1.10 8 filter CPU 100

SwT1.11 8 filter I/O Auto

SwT1.12 8 filter I/O Manual-aio-4094 Restlts:fail

SwT1.13 8 filter I/O Manual-aio-10

SwT1.14 8 filter Restart:stable:pure

SwT1.15 8 filter I/O Manual aio>20>5>10 1 break;pathdely bug

SwT1.16 8 filter I/O Auto 10

SwT1.17 8 filter CPU 50 Slave Only

SwT1.18 8 filter CPU 100 Slave Only Can not able to set frequency

SwT1.19 8 filter CPU Manual-cpu Slave Only Can not able to set frequesncy

SwT1.20 8 filter CPU Manual-cpu-1 Slave Only

SwT1.21 8 filter CPU Manual-cpu-1 Slave Only

SwT1.22 8 filter I/O I/O-8 Slave Only Error:pcsleep

Table C.3: Software Timestamping Test

References

Literature

[1] D. W. Allan et al. “Precision oscillators: Dependence of frequency on temperature,
humidity and pressure”. IEEE Frequency Control Symposium (1992) (cit. on p. 3).

[2] AN-1838 IEEE 1588 Boundary Clock and Transparent Clock Implementation Us-
ing the DP83640. Tech. rep. SNLA104A. Edwards, CA: Texas Instruments Incor-
porated, Apr. 2013. url: http://www.ti.com/lit/an/snla104a/snla104a.pdf (cit. on
pp. 6, 7).

[3] Markus Seehofer. Andreas Dreher Dirk Mohl. Precision Clock Synchronization –
IEEE 1588 (White Paper Rev 1.2). Version 1.2. url: http://www.hirschmann.co
m (cit. on pp. 5, 9).

[4] Markus Seehofer. Andreas Dreher Dirk Mohl. Precision Clock Synchronization –
IEEE 1588 (White Paper Rev 2.0). Version 2.0. url: http://www.hirschmann.co
m (cit. on p. 3).

[5] Suchit Lapcha Changrong Li and Mingkai Hu. IEEE 1588 for Telecom and Net-
working Applications. Tech. rep. FTF-NET-F0102. NXP Freescale Technology Fo-
rum(FTF), June 2012. url: https://www.nxp.com/files-static/training_pdf/FTF
/2012/americas/WBNR_FTF12_NET_F0102.pdf (cit. on p. 4).

[6] Cisco Nexus 3000 Series NX-OS System Management Configuration Guide, Re-
lease 5.0(3)U3(1). Tech. rep. OL-26558-01. Cisco Systems Networking hardware
company. url: https://www.cisco.com/c/en/us/td/docs/switches/datacenter/ne
xus3000/sw/system_mgmt/503_U3_1/b_Cisco_n3k_System_Mgmt_Config_5
03_U3_1/b_Cisco_n3k_System_Mgmt_Config_503_U3_1_chapter_0101.pdf
(cit. on pp. 6, 7).

[7] Richard Cochran and Cristian Marinescu. “Design and Implementation of a PTP
Clock Infrastructure for the Linux Kernel”. International IEEE Symposium on,
Sep. 27–Oct 1 (2010), pp. 116–121 (cit. on pp. 11, 12, 14, 15).

[8] John Eidson. Tutorial on IEEE 1588. Tech. rep. Agilent Technologies, Inc, Oct.
2005. url: https://www.nist.gov/sites/default/files/documents/el/isd/ieee/tutorial
-basic.pdf (cit. on p. 4).

47

http://www.ti.com/lit/an/snla104a/snla104a.pdf
http://www.hirschmann.com
http://www.hirschmann.com
http://www.hirschmann.com
http://www.hirschmann.com
https://www.nxp.com/files-static/training_pdf/FTF/2012/americas/WBNR_FTF12_NET_F0102.pdf
https://www.nxp.com/files-static/training_pdf/FTF/2012/americas/WBNR_FTF12_NET_F0102.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/system_mgmt/503_U3_1/b_Cisco_n3k_System_Mgmt_Config_503_U3_1/b_Cisco_n3k_System_Mgmt_Config_503_U3_1_chapter_0101.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/system_mgmt/503_U3_1/b_Cisco_n3k_System_Mgmt_Config_503_U3_1/b_Cisco_n3k_System_Mgmt_Config_503_U3_1_chapter_0101.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/system_mgmt/503_U3_1/b_Cisco_n3k_System_Mgmt_Config_503_U3_1/b_Cisco_n3k_System_Mgmt_Config_503_U3_1_chapter_0101.pdf
https://www.nist.gov/sites/default/files/documents/el/isd/ieee/tutorial-basic.pdf
https://www.nist.gov/sites/default/files/documents/el/isd/ieee/tutorial-basic.pdf

References 48

[9] Geoffrey M. Garner. IEEE 1588 Version 2. Tech. rep. 2008 International IEEE
Symposium on Precision Clock Synchronization for Measurement, Control and
Communication, Sept. 2008. url: http://passthrough.fw-notify.net/download/57
0185/http://www.ieee802.org/1/files/public/docs2008/as-garner-1588v2-summary
-0908.pdf (cit. on pp. 6, 7, 9).

[10] IEEE Std 1588 -2002. IEEE Standard for a Precision Clock Synchronization Pro-
tocol for Networked Measurement and Control Systems. url: https://standards.i
eee.org/findstds/standard/1588-2002.html (cit. on pp. 4, 6, 10).

[11] IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002). IEEE Standard for a Pre-
cision Clock Synchronization Protocol for Networked Measurement and Control
Systems. July 24, 2008. url: https://standards.ieee.org/findstds/standard/1588-2
008.html (cit. on pp. 4, 7, 9, 10).

[12] Mike Gilson Jean-Loup Ferrant. Synchronous Ethernet and IEEE 1588 in Tele-
coms. Next Generation Synchronization Networks. 1st ed. London: ISTE Ltd, 2013
(cit. on p. 3).

[13] Nick Barendt Kendall Correll and Michael Branicky. “Design Considerations for
Software Only Implementations of the IEEE 1588 Precision Time Protocol”. IEEE
1588 Conference, Zurich, October 2005 1 (2005) (cit. on p. 11).

[14] Kevin B. Stanton Patrick Ohly David N. Lombard. “Hardware Assisted Precision
Time Protocol.Design and case study.” in Proceedings of LCI International Con-
ference on High-Performance Clustered Computing.2008 1 (2008) (cit. on pp. 8,
11, 14, 16).

[15] Cristian Marinescu Richard Cochran and Christian Riesch. “Synchronizing the
Linux System Time to a PTP Hardware Clock.” Precision Clock Synchronization
for Measurement Control and Communication (ISPCS), 2011 International IEEE
Symposium on 12-16 Sept. 2011 1 (2011) (cit. on pp. 11, 16, 17).

[16] Steve T. Watt. “Understanding and Applying Precision Time Protocol”. Power
and Energy Automation Conference, March 2014 (2014), pp. 2–3 (cit. on p. 10).

Online sources

[17] IEE 1588. url: https://www.nist.gov/el/intelligent-systems-division-73500/introdu
ction-ieee-1588 (cit. on p. 4).

[18] Linux Kernel Documentation: Timestamping Control Interfaces. url: https://ww
w.kernel.org/doc/Documentation/networking/timestamping.txt (cit. on pp. 13, 14).

[19] Time-Stamping and Time Synchronization. url: https://docs.napatech.com/read
er/897VV1LF3lshs6Q23PkgzQ/5TKHcCpFK5gUCnKBkD7shQ (cit. on p. 9).

[20] Yocto Project Documentaion. url: https://https://www.yoctoproject.org/docs/
(cit. on p. 38).

http://passthrough.fw-notify.net/download/570185/http://www.ieee802.org/1/files/public/docs2008/as-garner-1588v2-summary-0908.pdf
http://passthrough.fw-notify.net/download/570185/http://www.ieee802.org/1/files/public/docs2008/as-garner-1588v2-summary-0908.pdf
http://passthrough.fw-notify.net/download/570185/http://www.ieee802.org/1/files/public/docs2008/as-garner-1588v2-summary-0908.pdf
https://standards.ieee.org/findstds/standard/1588-2002.html
https://standards.ieee.org/findstds/standard/1588-2002.html
https://standards.ieee.org/findstds/standard/1588-2008.html
https://standards.ieee.org/findstds/standard/1588-2008.html
https://www.nist.gov/el/intelligent-systems-division-73500/introduction-ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/introduction-ieee-1588
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://docs.napatech.com/reader/897VV1LF3lshs6Q23PkgzQ/5TKHcCpFK5gUCnKBkD7shQ
https://docs.napatech.com/reader/897VV1LF3lshs6Q23PkgzQ/5TKHcCpFK5gUCnKBkD7shQ
https://https://www.yoctoproject.org/docs/

	Declaration
	Abstract
	List of Symbols and Abbreviations
	Introduction
	Research Objectives and Goals
	Approach
	Outline

	Literature Review
	Time Synchronization
	Time Synchronization Technologies
	Overview of IEEE 1588 Precision Time Protocol (PTP)
	Scope of PTP Standard:
	Protocol Standard Messages
	Protocol Standard Devices
	Message Exchange and Delay Computation
	Protocol Hierarchy Establishment Mechanism

	PTP Infrastructure in Linux
	Timestamping Mechanisms
	Software Timestamping
	Hardware Timestamping
	Linux kernel Support for Timestamping

	PTP Clock Infrastructure and Control API

	Design and Implementation
	Tools and technologies
	LinuxPTP
	PTPd
	stress-ng
	iPerf
	Matlab
	Beaglebone Black

	Design Consideration and System Hierarchy

	Test and Measurements
	Test Case Scenarios
	Software Timestamping
	Hardware Timestamping
	Comparison of Software and Hardware based Synchronization
	Hardware Assisted Time Synchronization under CPU Load
	Hardware Assisted Time Synchronization under I/O Load
	Hardware Assisted Time Synchronization under Network Load

	Conclusion
	Improvements and Future Work

	Appendix: Technical Details
	Appendix: Installation Guide
	Appendix: Additional Tests and Measurements
	References
	Literature
	Online sources

