
Kiel University of Applied Sciences

Bachelor-Thesis

A Data-Driven Approach to
Wavetable-Synthesis

Niklas Wantrupp

Matr.-No.: 928817
Course of Studies: Information Technology

supervised by
Prof. Dr. Robert Manzke and Prof. Dr.-Ing. Gunnar Eisenberg

August 20, 2019

Abstract

The generation of raw audio, using generative deep learning models, is a field

which recently received a lot of attention with the proposal of WaveNET or

WaveGAN. Both models use different deep learning architectures and are

thus capable of generating novel sounds from a learned prior distribution.

The systems are mainly adopted in text-to-speech environments.

This thesis, however, concentrates on the generation of raw audio for cre-

ative domains like sound design. Therefore TableGAN is presented, a gen-

erative model which is capable of synthesizing single-cycle waveforms from a

learned prior distribution with the ability to interpolate smoothly between

different points within the latent space. Furthermore, a wavetable oscillator

framework is proposed which is capable of playing back the created waveta-

bles.

Contents

1 Introduction 3

2 Technical Background 5
2.1 Wavetable Synthesis . 5

2.1.1 Related Synthesis Forms 6
2.1.2 Wavetable Creation . 8
2.1.3 Wavetable Oscillators 17
2.1.4 The Reference Model Wavetable Synthesis Process . . 22

2.2 Data Driven Sound Generation 22
2.2.1 Deep Learning Background 24
2.2.2 Convolutional Neural Networks (CNNs) 27
2.2.3 Generative Adversarial Networks (GANs) 29
2.2.4 WaveGAN Architecture 33

3 The Data-Driven Wavetable Oscillator 39
3.1 Audio File Preparation . 40
3.2 The proposed TableGAN Model 41
3.3 Sampling the TableGAN Latent Space 45

3.3.1 Wavetable Post Processing 46
3.4 Proposed Oscillator . 47

4 Evaluation 48
4.1 TableGAN Training Process 49
4.2 Inception Score (IS) Measures 50

4.2.1 Analyzation Process 51
4.3 Comparison between Test-Data Inner-Class Similarities 54
4.4 Comparison between Model Class Distributions 56
4.5 Nearest Neighbor Comparison 58
4.6 Evaluation of Space Continuity 59

5 Results, Discussion and Limitations 62

1

6 Conclusion and Future Directions 64

List of Acronyms 66

List of Figures 67

List of Tables 69

Bibliography 70

Appendices 75

A 76

B 78

C 80

D 83

E 86

2

1. Introduction

Since 2016 intense research on applications for artificial intelligence has been

done in Google’s Magenta Project1, analysing the creative processes of music

creation. In 2017 Google’s first approach of generating raw audio with the

help of artificial intelligence, the Neural-Synthesizer (NSynth)2, was intro-

duced. A Synthesizer based on deep neural networks, which creates sounds

with a data-driven approach in mind, based on the WaveNet-Algorithm

(Oord et al. 2016).

The NSynth-Algorithm works by using an autoencoder network to find a

representation of the sound in the domain of the network. A decoder network

is used to back convert the encoded sound, aiming to maintain the original

characteristics of the sound. Sound fusion is carried out in the transformed

domain, resulting in a hybrid, sounding different than a classical mix (time-

domain addition) of simultaneously played sounds (Oord et al. 2016).

Similar to WaveNET, WaveGAN was introduced by Donahue, McAuley,

and Puckette (2018). It uses a GAN to learn a latent representation of the

provided test data and is able to synthesize audio samples of a length of one

second at a sampling rate of 16 kHz.
1Further information can be found at: Magenta
2Further information can be found at: NSynth

3

https://magenta.tensorflow.org/
https://magenta.tensorflow.org/nsynth

This thesis will examine the application and modification of theWaveGAN-

Algorithm to approach sound generation in a classical manner. Classical

wavetable oscillators are holding an unspecified amount of periodic wave-

form cycles which can be swept through to modify the harmonic content of

the created signal. When users want to create their own wavetables from

audio samples, synthesisers like Xfer-Records Serum3 allow users to do so by

choosing between different algorithms to produce their wavetables. These

results however need some careful modification to ensure that unwanted

artifacts are avoided when modulating the position of the wavetable.

By building a deep neural network based on the WaveGAN-Algorithm a

wavetable synthesis framework is created, which produces single-cycle wave-

forms based on the given audio material. This audio material can be created

from a quantity of audio samples to examine the impact on musical timbre,

when mixing takes place in the compressed domain of the network. Fur-

thermore, the interpolation process between different waveform-cycles in the

wavetable should be tackled by the algorithm as well, producing smooth re-

sults when changing the wavetable position. In addition, the feasability of

this approach should be examined with realtime modulation of the wavetable

position in mind.

Therefore TableGAN (presented in section 3.2) is proposed, a model for

synthesizing single-cycle wavetables, accompanied by a classical FFT-based

synthesis process from audio files (presented in section 2.1.4) and a wavetable

oscillator framework to playback created wavetables (presented in section

3.4). All implementations can be found on the accompanying USB-Stick 4.

3Further information can be found at: Xfer-Records Serum
4The Contents of the USB-Stick are shown in Appendix E

4

https://xferrecords.com/products/serum

2. Technical Background

2.1 Wavetable Synthesis

Wavetable synthesis arose from the need for a synthesis method that can

be employed in low power hardware to synthesize sounds of arbitrary pitch

and harmonical content. Due to the unavailability of hardware floating-point

units (FPU’s), calculations of trigonometric functions were implemented us-

ing software approximations. Furthermore wavetable oscillators (also called

table lookup oscillators) were used, because the calculation of those higher-

level math functions was too expensive for realtime synthesis (Boulanger and

Lazzarini 2011).

Precalculating a cycle of a waveform and storing it into a lookup table

of fixed size made it possible to cycle through that table at different speeds

to generate a steady signal of a particular pitch. Wavetable synthesis, in

general, should not be confused with PCM sample buffer playback, where

an entire PCM file, saved in memory, can be played back at different rates

(Bristow-Johnson 1996).

Even though FPUs implemented in hardware and computer systems are

much faster nowadays, wavetable synthesis still is intensively used in modern

synthesizers. A reason for that is the significant advantage over other sound

5

generation methods. I.e., the method does not only offer the possibility to

mimic classic waveform shapes like saw, square, triangle, or sine, but it is also

allows to produce more complex, harmonically rich waveforms (Boulanger

and Lazzarini 2011).

Modern synthesizers allow users to load their sounds into the oscillator. A

pitch detection algorithm tries to extract single-cycle waveforms into different

frames, which reside in memory. Those frames can be exchanged dynamically

in realtime, producing a change in harmonical content as the sound evolves

(Bristow-Johnson 1996).

Other synthesis techniques like additive synthesis are also able to produce

harmonically rich sounds that can change their harmonic content over time,

but the process of stacking sine waves at different frequencies in realtime is

far more computationally intensive than playback and looping of a wavetable

(Franck and Välimäki 2012).

There are two main approaches to implement wavetable synthesis. The

first approach, called wavetable cross-fading, which this thesis will focus on,

aims at playing back two different wavetables at one time and to linearly

interpolate their values. In contrast the second approach, called multiple

wavetable synthesis, focuses on mixing different wavetables, each one having

a temporal envelope function (Franck and Välimäki 2012).

2.1.1 Related Synthesis Forms

Before describing the technical details of wavetable synthesis, closely related

methods are being discussed to demarcate those from one another.

6

Sample and Synthesis (S&S)

S&S describes synthesis forms that use a sample playback oscillator as a raw

sound source. In contrast to wavetable synthesis, S&S loads a whole PCM

file into the memory. Although typically implemented in digital form, an

S&S synthesizer also can be implemented using analog hardware, e.g. the

mellotron, which used magnetic tape for sample storage (Russ 2009).

For playback, samples usually are replayed once, instead of looping a

single cycle of the waveform, although this is also possible with modern

instruments (Russ 2009). The variation of pitch can be achieved with up-

and down-sampling methods, playing back the sound at different sampling

rates. For this process, a steep reconstruction filter is needed to eliminate

alias frequencies at half of the sampling rate (Russ 2009). Another method

which is also incorporated for pitching the S&S oscillator is interpolation.

This is presented in section 2.1.3.

Granular Synthesis

Granular synthesis is another form that can work with audio files. Contrary

to wavetable synthesis, in granular synthesis small sections (usually 10-100

milliseconds) get extracted from a source file. These so called “grains” are

mixed with other small grains, each with an envelope function, to make

sure each grain starts and stops at zero to avoid discontinuities. At play-

back, these grains get reorganized, with control over the number of grains,

their length, and their repetition rate over time. Martin Russ states, that:

“In some ways, granular synthesis can be considered as the limiting case of

wavetable synthesis, where the table of waveforms is swept very rapidly to

give a constantly changing waveshape” (Russ 2009).

7

2.1.2 Wavetable Creation

The creation of wavetables from a given audio file is a nontrivial task. At

first, a pitch detection algorithm has to be employed to find the right sample

positions within the given buffer to cut out frames. Those frames need to

be stretched out or compressed regarding a specific table size to create the

wavetables.

Because the table can contain harmonics that are above Nyquist (Shan-

non 1949), it should be bandlimited, or algorithms for suppressing aliasing

artifacts need to be applied. When band-limiting a table to the maximum

number of possible harmonics it should be noted that scanning through the

table at a frequency higher than the root frequency of the table creates alias

frequencies (Boulanger and Lazzarini 2011). Alias frequencies can be avoided

through the creation of bandlimited tables for specified frequency ranges. All

steps in creating wavetables from arbitrary audio files will be introduced in

the following sections.

Pitch Detection

The task of pitch detection is the first important step in creating wavetables,

each containing a single cycle of an input audio file. For pitch detection,

time and frequency domain approaches can be used to detect the pitch at

a given time t0. In Zölzer (2011), a good selection of available algorithms

are shown. Here, the average magnitude difference function (AMDF) and the

YIN-algorithm are presented, which both represent time-domain approaches.

AMDF The average magnitude difference function, first presented by Ross

et al. (1974) is a correlation function recommended by Bristow-Johnson

(1996) for the task of pitch detection for wavetable creation. The AMDF

8

is defined by

D[τ] =
1

N

N−1∑
n=0

|x[n]− x[n+ τ]|, (2.1)

as introduced by Ross et al. (1974). x[n] is a sample sequence which is

multiplied with a rectangular window. τ defines the lag number, which is

between 0 and N − 1.

Equation (2.1) should show a minimum at the lag number of the period

T of a given periodic signal and further minimum peaks with less amplitude

at period multiples (Muhammad 2011). The frame size N of the rectangular

window must be chosen carefully, as no pitches can be detected which period

would exceed the frame length (Bristow-Johnson 1996). The pitch period

can be estimated by

T = argminτmaxτ=τmin
D[τ], (2.2)

as proposed in Ross et al. (1974).

Because the AMDF starts with value zero at lag zero and is often nonzero

at the period due to imperfect periodicity, a lower limit has to be set on the

search range, as the algorithm would choose lag zero as the period (Cheveigné

and Kawahara 2002). When the input signal is noisy, AMDF has problems

in estimating the right pitch. In those cases, 2T or T
2
are often predicted

as pitch, which is known as “double-pitch error” or “half-pitch error” respec-

tively(Muhammad 2011).

In Figure 2.1 (a) the performance of the AMDF algorithm under noisy

conditions can be observed. Because the input signal has a significant pro-

portion of noise, the AMDF has difficulties in estimating the right pitch.

Caused by the falling trend of the AMDF in the latter half, a completely

wrong period was estimated, as figure 2.1 (a) shows. The sampling rate of

the input is fs = 44100Hz. The estimated period length in samples Ts by

9

AMDF is 1023, so the estimated frequency f0 is f0 = fs
Ts

= 44100Hz
1023

≈ 43.1Hz.

Figure 2.1: Comparison of (a) AMDF and (b) YIN Pitch Detection Perfor-
mance

YIN To overcome those shortcomings Cheveigné and Kawahara (2002) pro-

pose the YIN pitch detection. YIN is calculated in 5 steps. The first step is

to calculate the lag values:

De[τ] =
N−1∑
n=0

(x[n]− x[n+ τ])2, (2.3)

as proposed by Cheveigné and Kawahara (2002). Equation (2.3) squares the

difference term, instead of taking the absolute value as equation (2.1) does.

To avoid setting a lower limit for the search range, and to be able to define

a threshold where a local minimum has to fall below, in order considering it

as a valid pitch candidate, the YIN-algorithm is normalized as proposed by

Cheveigné and Kawahara (2002). The resulting “cumulative mean normalized

10

difference function” is defined as:

D′e[τ] =

1 τ = 0

De[τ]
1
τ

∑τ
n=1De[n]

, else,

(2.4)

presented by Cheveigné and Kawahara (2002). The “cumulative mean nor-

malized difference function” starts at 1 and drops just below 1, where the lag

value De(τ) falls below the average (Cheveigné and Kawahara 2002).

To minimize the “octave error” phenomenon, an absolute threshold is

defined, where a lag value has to fall below to be considered a valid pitch

candidate. When none is found, the global minimum is chosen instead. To

also consider periods which are non-integer multiples of the sampling rate,

the local minima of D′e[τ] are interpolated with their direct neighbor val-

ues parabolically to select the period estimate (Cheveigné and Kawahara

2002). Figure 2.1 (b) shows the pitch detection using the YIN-algorithm.

The dashed orange line displays the threshold a pitch candidate has to fall

below. YIN detects the right pitch with a deviation of ∼ 0.4Hz in this

specific case.

The applied pitch detection used in the reference model is YIN, where

the input file is being analyzed in frames of L = 2048 samples at a sampling

rate of fs = 44100Hz. This allows to detect frequencies down to fmin =

fs
L
≈ 21.5Hz. Because the bottom of the hearing range of a human is at

approximately 20Hz, the frame length of L = 2048 will be sufficient. The

YIN-algorithm will analyze one frame at a time and will proceed at a hop

size which is dependent on the detected period length, so adjacent wavetables

include the corresponding cycles of the input file.

11

Prevention of Aliasing Components

Because the cycle found by the pitch detection algorithm will be played back

at different speeds resulting in pitches that could be above Nyquist, care

must be taken to avoid the emergence of alias frequencies.

One possible method presented in Franck and Välimäki (2012) is to inte-

grate the wavetable multiple times before storing it into memory, and when

playing it back, the signal is differentiated as many times as it was inte-

grated. This technique leads to a significant reduction in amplitude of the

alias frequencies (Franck and Välimäki 2012).

The technique which is incorporated in the presented reference model

is another bandlimited approach. Within this approach a stack of tables is

created for every wavetable5. Every table within this stack is a representation

of the input wavetable with a different amount of harmonics which can be

played back within a specific frequency range.

Determine Maximum Number of Harmonics Foremost the maximum

number of harmonics have to be specified and with this the spacing of ad-

jacent wavetables. The spacing is important as it determines the amount of

aliasing which could occur at playback. The maximum number of harmonics

Hmax from a specified frequency f0 up to Nyquist can be calculated by:

Hmax =

⌊
fs
2

f0

⌋
, (2.5)

as shown by Redmon (2012). Given a sampling rate of fs = 44100Hz and a

frequency of f0 = 20Hz the resulting maximum number of Harmonics would

be: Hmax =
⌊

44100
2

20

⌋
= 1102. When using a table spacing of an octave, which

5referred to as wavetable stacks

12

results in a doubling in frequency per table, the first table would span from

20Hz − 40Hz. This would result in creating a fair amount of harmonics

above Nyquist, as 40Hz · 1102 = 44080Hz would be the highest harmonic

created.

The first step to meet the Nyquist criteria would be to consider choosing

a different table spacing. The reference model uses a table spacing of a

minor third. Because an octave is a doubling in frequency and consists of 12

semitones, the ratio r1 of one semitone can be described as:

r1 =
12
√

2 = 2
1
12 (2.6)

With equation (2.6) the table spacing of a minor third would result in: r3 =

2
3
12 = 2

1
4 ≈ 1.1892. When equation (2.5) takes that spacing into account it

can be rewritten as follows:

H ′max =

⌊
fs
2

f0 · rs

⌋
(2.7)

The subscript s determines the number of semitones and rs the table spacing

ratio which can be calculated with rs = 2
s
12 .

Using equation (2.7) with a minor third would result in H ′max = 927

harmonics for the first table. The first table would span form f0 = 20Hz

to f1 = 20Hz · r3 ≈ 23.78Hz with the highest harmonic of f0 at h0,max =

18540Hz and f1 at h1,max = 22048Hz. With this approach no aliasing is

accepted with the trade-off, that for f0 the highest harmonic is at 18540Hz

which is below the threshold of 20000Hz.

Bandlimiting Process With the base wavetable constructed the bandlim-

iting process can be applied. For that process the given input vector xwt[k]

13

has to be transformed into the frequency domain using the DFT resulting

in Xwt[n] = DFT{xwt[k]}. Using H ′max all harmonics hn > H ′max are set to

zero, to bandlimit the given wavetable. Because the complex DFT is used,

the corresponding negative frequencies also have to be set to zero (Redmon

2012). To get rid of possible DC offsets the first frequency bin should be

set to zero resulting in Xwt[0] = 0 (Redmon 2012). Next, the IDFT of that

signal is taken to transform it back into the time domain. Because the input

signal is real-valued the real part of the IDFT is taken to get the resulting

wavetable x′wt[k] = Re{IDFT{Xwt[n]}}, which then is normalized to [−1, 1]

(Redmon 2012).

This process needs to be repeated until H ′max = 1, decreasing the number

of harmonics by H ′max = H ′max · 1
rs

for every following table in the stack. The

reference model creates objects for every table within that stack, holding the

table itself, the table length and the highest frequency at which the table can

be played back to avoid aliasing as proposed by Redmon (2012).

Figure 2.2 shows the first eight tables of a wavetable stack. It can be

observed that every successive wavetable decreases in the number of har-

monics, enabling it to be played back at a higher pitch without creating alias

frequencies.

14

Figure 2.2: Representation of the 8 first wavetables of a square wave within
a wavetable stack, with rs = 2

Phase Alignment The subsequent wavetables which are created are not

necessarily phase-aligned to each other. When automating the wavetable

position and interpolating between two adjacent wavetables, null values could

be created when not properly phase-aligned to each other (Bristow-Johnson

1996). To ensure a proper phase alignment between two adjacent tables, the

cross-correlation is calculated:

rxy[τ] =
1

N

N−1∑
k=0

(x[k] · y[k + τ])

=
1

N
IDFTτ{X · Y }, τ = 0, 1, 2...L− 1,

(2.8)

as shown by Smith (2010).

L depicts the length of the analysis frame and x and y are the input vec-

tors in the time domain of two adjacent wavetables. The cross-correlation

function is a measure of similarity vs. offset, where the maximum of the

function represents the offset between the wavetables (Smith 2010). Follow-

ing this, d = argmax rxy will give the delay of y in respect to x, where d is

15

the delay in samples. To align both tables y has to be delayed by d samples

into positive or negative direction depending whether d > L
2
.

Figure 2.3 shows the described process. In 2.3 (a) and (b) the signal

vectors x and y are being displayed. 2.3 (c) shows the calculated cross-

correlation vector with d = 2048 and 2.3 (d) shows the corrected y vector

which was shifted by d = 2048 samples.

Figure 2.3: Cross-Correlation Process (a) Sine Wave without shift (b) Sine
Wave shifted by π (c) Cross-Correlation (d) Corrected Sine Wave

Avoiding Discontinuities To avoid discontinuities at wavetable edges,

Bristow-Johnson (1996) recommends multiplying the analyzed wavetable by

a Hanning window. However, as this multiplication leads to a drastic al-

teration of the original waveform shape, another approach is taken. The

proposed approach multiplies the wavetable with a modified tanh-window

s[k] of length N
2
which is calculated by:

s[k] = 0.5 + 0.5 · tanh(
x[k]− N

2

b
) (2.9)

16

Where s is the tanh-window, x the input x coordinate vector, N
2
the turning

point of the tanh-function and b depicts the gradient.

To smooth the edges of the wavetable xwt, the first N
2
samples are mul-

tiplied with s and the last N
2
samples with 1 − s. Figure 2.4 (b) shows the

resulting smoothed waveform when applied to a sawtooth wave. In contrast

to 2.4 (a), where the sawtooth is heavily alterated by the hanning window,

only the edges of the wavetable are modified.

Figure 2.4: Comparison Hanning-Window Smoothing and tanh-smoothing
(a) Sawtooth smoothed with Hanning (b) Sawtooth smoothed with tanh

2.1.3 Wavetable Oscillators

The Oscillator is responsible for playing back the wavetables residing in mem-

ory. Pitch shifting is done with sampling rate conversion techniques. With

downsampling, the pitch is raised and with upsampling the pitch is lowered

(Franck and Välimäki 2012). The challenges arising from those mechanisms

are to avoid distortion, which occurs when the wavetable is played back at

an increment unequal to one. To reduce this distortion, which is called trun-

cation noise, interpolation algorithms are applied (Boulanger and Lazzarini

17

2011). The following sections introduce a trivial oscillator approach, which

then is being modified to meet the requirements of modern music production

systems.

The Trivial Wavetable Oscillator Approach

Appendix A shows a slightly modified Python implementation of the pro-

posed wavetable oscillator by Boulanger and Lazzarini (2011). This trivial

wavetable oscillator is not expecting a wavetable stack so it would produce

aliasing when playing back wavetables at pitches other than the table pitch.

The algorithm calculates the sample increment based on the normalized fre-

quency and the length of the wavetable. This value is added to the current

phase after every iteration to progress through the table.

Algorithm 1 Trivial Wavetable Oscillator
1: curphase = 0
2: incr = (f0/fs) ∗ L
3: while not at end of processing block do
4: index = int(curphase)
5: out[i] = table[index]
6: curphase+ = incr
7: while curphase ≥ L do
8: curphase− = L
9: end while

10: while curphase < 0 do
11: curphase+ = L
12: end while
13: end while

Algorithm 1 shows the pseudocode for the implementation. Line 7 - 12

implement the wrap-around so that the phase wraps around when reaching

the end of the table. A while loop is used to allow increments bigger than the

table length (Boulanger and Lazzarini 2011). Line 5 describes the critical part

of the trivial approach. The index which is read from the table is obtained

18

by truncating the fractional part of the phase position. Truncation leads to

distortion and the problem that it is not possible to playback the wavetable

at the exact desired frequency (Boulanger and Lazzarini 2011; Pirkle 2015).

Boulanger and Lazzarini (2011) state to gain acceptable quality using the

truncation algorithm a minimum table size of 8192 samples is needed.

Interpolation Methods for Wavetable Playback

To overcome the arising issues caused by truncating the fractional part of

the phase position, different interpolation methods are available. Follow-

ing Pirkle (2015), linear and third-order Lagrange interpolation methods are

commonly applied to minimize the effect of truncation noise.

Linear Interpolation Linear interpolation uses the fractional part of the

phase position to interpolate between the current integer position and the

next. The current output value of y can be calculated with:

y = y1 + (y2 − y1) · (p− x1), (2.10)

as proposed by Boulanger and Lazzarini (2011). Where x1 is the integer part

and p the fractional part of the phase position, y2 and y1 denote the table

values at the current and the next phase position. Because y2 can be greater

than the table length, a modulo operation has to be implemented to wrap

around the value to the start of the table. Another method is to extend

the table length by one and copy the first value to the last table position

(Boulanger and Lazzarini 2011). Appendix B shows the implementation of

the wavetable oscillator, using linear interpolation as suggested by Boulanger

and Lazzarini (2011).

19

Third Order Lagrange Interpolation The third order lagrange interpo-

lation N = 3 uses N + 1 = 4 points around the target value for interpolation

(Pirkle 2015). Zölzer (2008) and Smith (2010) propose to calculate the out-

put sample with:

y[x] =
N∑
n=0

ln[x]y[k], (2.11)

where x depicts the phase parameter and ln(x) is calculated with:

ln[x] =
N∏

j=0,j 6=n

x− xj
xn − xj

(2.12)

Appendix C shows a Python implementation of the third order lagrange

interpolation method, inspired by the implementation in Pirkle (2015). When

examining the source code, it should be noticed that the complexity of the

lagrange algorithm is O(n2) on the contrary to the complexity of O(n) of the

linear interpolation algorithm.

Comparison of Interpolation Algotihms Figure 2.5 shows a compar-

ison between the spectra of the different methods (a) truncation, (b) linear

interpolation and (c) Lagrange interpolation for playback of a wavetable.

The wavetable length is L = 1024 and the frequency is f0 = 441Hz at a

sampling rate of fs = 44100Hz. It can be observed that the truncation

algorithm produces the most distortion, as the peaks in the frequency bins

go up to ∼ −65dBFS. The highest peaks with linear interpolation are at

∼ −125dBFs and for the Lagrange interpolation there are barely any distor-

tions above −250dBFs.

20

Figure 2.5: Comparison of Interpolation Algorithms with table length of L =
1024 (a) Truncation, (b) Linear Interpolation, (c) Lagrange Interpolation

Figure 2.6 shows the same comparison but with a table length of L =

4096. One can clearly see that the truncation algorithm has a high level of

distortion frequencies, with peaks at about ∼ −77.5dBFS. The linear inter-

polation produces the highest peaks at ∼ −150dBFs, whereas the Lagrange

interpolation produces no distortion frequencies above −250dBFs. Following

that observation, it can be said that, with the table containing more samples,

the distortion is less obvious to the hearer. This meets with the statement

made by Boulanger and Lazzarini: “To obtain acceptable quality, a table

size of 8,192 points or greater is usually required, depending on the sampling

rate” (Boulanger and Lazzarini 2011).

21

Figure 2.6: Comparison of Interpolation Algorithms with table length of L =
4096 (a) Truncation, (b) Linear Interpolation, (c) Lagrange Interpolation

2.1.4 The Reference Model Wavetable Synthesis Pro-

cess

For the synthesis process, a reference model has been built to create waveta-

bles from given audio files. Those wavetables are created utilizing the meth-

ods presented above. For playing back the created wavetables, an oscillator

has been implemented, which is presented in chapter 3.4. Information on

how to use the wavetable framework appendix D should be inspected.

2.2 Data Driven Sound Generation

Deep learning is a fast-evolving domain which is mostly used in the field of

image and voice recognition or more recently translation (Briot, Hadjeres,

and Pachet 2017).

It describes a subset of tools in the field of machine learning (ML), based

on artificial neural networks, where deep means multiple layers which can

22

decompose a complex structure into simpler representations. General appli-

cations of deep learning are classification problems and predictions, but more

recently, also the generation of content (Briot, Hadjeres, and Pachet 2017).

As Briot, Hadjeres, and Pachet (2017) state, the success of this technology

is based on three points:

• Availability of mass data,

• availability of efficient and affordable computing power,

• recent technical advances in the field of machine learning.

Given the recent success of generative models in image generation, researchers

started to adopt similar techniques in the field of music generation. Those

methods have been widely adopted with the fundamental difference that au-

dio data is represented as a one-dimensional time series of audio samples,

instead of a two-dimensional instantaneous image (Purwins et al. 2019). Ap-

plications of generative models in the audio domain could be amongst others:

• Generation of semantic information,

• extraction of information,

• classification of audio data,

• generation of raw audio.

This thesis focuses on the generation of raw audio, using a deep learn-

ing model. Current state-of-the-art techniques for generation of raw au-

dio include SampleRNN, a model based on recurrent neural networks (RNN)

(Mehri et al. 2017), NSynth, which is based on WaveNET and uses an autore-

gressive approach (Engel, Resnick, et al. 2017; Oord et al. 2016) and GAN-

Synth and WaveGAN, both using a generative adversarial network (GAN)

(Engel, Agrawal, et al. 2019; Donahue, McAuley, and Puckette 2018).

23

It is important to state that deep learning is not the only method for

generative music creation. Methods like gaussian mixture models, hidden

markov models, or non-negative matrix factorization are also used but often

outperformed by deep learning models, when sufficient data is available as

Briot, Hadjeres, and Pachet (2017) claim.

Modelling the complex structure of raw audio waveforms with generative

models is a challenging task because as well as the local structure producing

high fidelity audio, the longterm structure needs to be captured to generate

globally consistent audio data (Vasquez and Lewis 2019).

2.2.1 Deep Learning Background

The core concept of deep learning are artificial neural networks (ANNs) which

are ideal for solving complex ML tasks (Géron 2017). In the following section

the fundamental concepts of deep learning are layed out. A more thorough

introduction can be found in (I. Goodfellow, Bengio, and Courville 2016;

Géron 2017).

The evolution of neural networks started in 1957 with the invention of

the Perceptron by Frank Rosenblatt, which consists of one layer of threshold

logic units (TLUs) (Géron 2017). Figure 2.7 shows a TLU. It consists of a

neuron or unit which takes a weighted sum and a bias term that is always 1.

After the calculation a step function is applied to the result. In most cases

the heavyside function H(x) =

0 x < 0

1, x >= 0.

is used (Géron 2017).

24

Figure 2.7: Threshold Logic Unit (Géron 2017)

A Perceptron is composed of a single layer containing 1 to n TLUs

with each neuron connected to all inputs. Because the Perceptron fails

to solve simple problems like calculating the logical XOR-function, Multi-

Layer-Perceptrons (MLPs) were introduced.

MLPs overcome the shortcomings of Perceptrons, by stacking up more

than one layer of Perceptrons on top of each other. MLPs have an input

layer, which just passes the input through to the network. Then 1 to n

hidden layers are added before one final layer called the output layer outputs

the computed values. When n >= 2 the ANN is called a deep neural network

(DNN) (Géron 2017).

The MLP approach also replaces the step function by the sigmoid func-

tion σ(x) = 1
1+e−x

which is called the activation function of the neuron. It is

trained using the backpropagation algorithm introduced by Rumelhart, Hin-

ton, and Williams (1986). The algorithm makes a prediction for one training

step which is called the forward pass. It measures the error, using a loss func-

tion, and then propagates the error back layer per layer through the network

with every connection, measuring how much it contributes to the error and

25

finally tweaking the connection weights, using the gradient descent optimiza-

tion algorithm (Géron 2017). Modern architectures of the MLP often use

other optimization, activation, and loss functions, which are all optimized

towards different use cases.

Gradient Descent The gradient descent algorithm is an optimization al-

gorithm to optimize the weights of neuron connections. It does so by measur-

ing the local gradient of the loss function with regards to a parameter vector

θ and optimizes the parameters into the direction of the descending gradient

with a defined step size called the learning rate. The gradient descent is

finished when it converged to a minimum (Géron 2017).

Batch Normalization Batch normalization is a technique applied to re-

duce vanishing/exploding gradients while training the network. The vanish-

ing gradient problem happens, when gradients are getting smaller with ev-

ery lower layer of the network. This results in virtually unchanged weights,

which ensure that the training process never converges to an optimal solution

(Géron 2017).

The exploding gradient problem is the exact opposite of the vanishing

process. The gradients are growing over time, resulting in large weight up-

dates which lead to divergence of the algorithm (Géron 2017). To overcome

the vanishing/exploding gradient problem, alternative activation functions

can be used to reduce those problems at the beginning of the training signif-

icantly. However, those problems can come back during training.

The objective of the batch normalization algorithm is to prevent this by

adding a batch normalization layer in front of each activation function to

zero-center and normalize the inputs. This is achieved by using the mean

26

and standard deviation over the mini-batch6 to zero-center and normalize the

input. It then scales the input with a factor γ and shifts the output by the

parameter β. These parameters are learnable for each batch normalization

layer (Géron 2017).

2.2.2 Convolutional Neural Networks (CNNs)

CNN architectures are composites of convolutional layers, pooling layers, and

a fully connected layer. The input of the network gets analyzed with a fixed

number of filters with a specified kernel size, which describes the length of

a filter. Those filters are convoluted over the input sequence with a given

step size, the stride. When reaching the edge of the input, the zero-padding

value determines how the filter behaves at edges (Briot, Hadjeres, and Pachet

2017).

Depending on the chosen architecture, it is a common practice to have

more than one convolutional layer. After the convolution step, the results

are passed to a pooling layer, which passes the strongest signal in the frame

on to the next step. Max pooling, for example, passes the highest value

on to the next layer (Briot, Hadjeres, and Pachet 2017). Pooling serves for

abstracting the input and just passing the most relevant signals on to the

next layer, which is the fully connected layer.

The fully connected layer represents a standard feedforward network, in

which normally a softmax activation function for classification problems trig-

gers the output of the network (Briot, Hadjeres, and Pachet 2017).
6mini-batch or batch: training data is split into mini-batches of a given batch size

27

Receptive Fields of Convolutional Neural Networks

Unlike fully connected layers, convolutional units depend on a region of the

input feature map. Just this specified region will trigger the weights of the

corresponding unit (Luo et al. 2016). This region is called the receptive field

of the convolutional unit.

Central values in the input feature map have more impact on the output,

as they have multiple ways of propagating through the network in contrast to

outer values. To increase the size of the receptive field, convolutional layers

can be stacked, which grow the receptive field linearly by the kernel length.

Another approach is to use subsampling. This increases size multiplicatively

(Luo et al. 2016). To calculate the size of the receptive field of each layer the

following equations are used:

nout = bnin + 2p− k
s

c+ 1

nin : number of input samples

nout : number of output samples

k : convolution kernel size

p : convolution padding size

s : convolution stride size

(2.13)

jout = jin · s

rout = rin + (k − 1)

j : distance between two adjacent features

r : receptive field size,

(2.14)

as proposed by Hien (2017).

Calculating and planning the receptive field size while designing the

28

model, has a significant impact on the results. Especially in audio aplica-

tions a sizeable receptive field is needed to catch longterm structures and

dependencies in audio data (Oord et al. 2016; Donahue, McAuley, and

Puckette 2018).

2.2.3 Generative Adversarial Networks (GANs)

Generative adversarial networks were introduced by (I. J. Goodfellow et al.

2014). They consist of a discriminator (D) and a generator (G), where D is

fed by real data or a generated sample from G in an alternating manner. Gs

objective is to generate a synthetic sample from an input noise vector (I. J.

Goodfellow et al. 2014). D classifies the input to the probability that the

data is either real or synthetic. This adversarial process can be described as

a minimax two-player game with:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))], (2.15)

as introduced by I. J. Goodfellow et al. (2014).

In equation 2.15 pdata describes the distribution of the training data and

pz describes the noise distribution. The objective of the adversarial net is

to learn Gs distribution pg over the data x (I. J. Goodfellow et al. 2014).

During training D is trained to maximize the probability of assigning the

right labels to the given input samples. G is trained to minimize the term

log(1 − D(G(z))) (I. J. Goodfellow et al. 2014). In practice equation 2.15

might not produce sufficient gradients for G to learn well because D can

reject samples from G with high conviction in the beginning of the training

phase, as the samples from G are clearly different from the training data

(I. J. Goodfellow et al. 2014). To overcome this, the objective of G is to

29

maximize log(D(G(z))) instead of log(1− (D(G(z)))). This provides G with

much stronger gradients in the beginning of the training, resulting in:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[− log(D(G(z)))], (2.16)

as introduced by I. J. Goodfellow et al. (2014). To make sure D is maintained

near the optimum, it is trained k times per training iteration of G. This

is because training D and G iteratively in the inner training loop leads to

overfitting of D and is inefficient (I. J. Goodfellow et al. 2014).

The training of the adversarial network is finished when D is not able to

tell whether a sample either comes from the training set or is generated by

G. G is then able to produce synthetic samples, which model the training

data (Briot, Hadjeres, and Pachet 2017).

GAN Optimization

GAN architectures based solely on the proposed model by I. J. Goodfellow

et al. (2014) are highly unstable in training. The unstability occurs because

the architecture suffers from the following problems:

• mode collapse: G produces samples with a small diversity

• diminishing gradients: D is getting too good at the classification of

real/fake data, resulting in diminishing gradients of G and no or slow

learning of G taking place

• oscillating loss: model parameters destabilize and oscillate

, as laid out by Hui (2018a) and Foster (2019).

Mode collapse is a problem, where generated samples converge to the

same sample. This is known as full mode collapse. Full mode collapse is

30

not a common problem. Instead, it often happens that the mode partially

collapses, meaning that a range of similar samples are produced (Hui 2018a).

The GAN architecture relies on gradient descent as an optimization algo-

rithm. With two networks competing against each other, the learning process

can be very slow in the beginning. Since D can tell the difference between

real and fake easily, the gradients for G are diminishing, which slows down

the learning process (Hui 2018a).

A GAN converges when it finds the Nash equilibrium of equation 2.15

(I. J. Goodfellow et al. 2014). Convergence is achieved when one side does

not want to change its action regardless of what the opponent might do. Hui

(2018c) shows that using gradient descent cost functions may never converge

in a minimax-game.

Those instabilities of the original architecture proposed by I. J. Goodfel-

low et al. (2014) have been theoretically analyzed by Arjovsky and Bottou

(2017). Arjovsky and Bottou (2017) showed that the original loss function,

shown in equation 2.15, suffers from diminishing gradients and also the alter-

native cost function in equation 2.16 has problems with fluctuating gradients,

resulting in poor quality samples. This led researchers to trying to find new

loss functions that can solve those problems. The loss function which is pre-

sented here is the Wasserstein GAN gradient penalty (WGAN-GP) algorithm

proposed by Gulrajani et al. (2017), which is used both in WaveGAN and in

the proposed TableGAN architectures.

WGAN-GP uses the Wasserstein loss function instead of binary cross-

entropy. This requires the training data to be labelled y = 1 for real and y =

−1 for fake instead of y = 1 and y = 0. Additionally, removing Ds last layers

activation function leads to output predictions in the range of [− inf, inf].

Because of that, D is designated as critic in the context of WGAN-GP. Ds

31

loss is calculated via comparing the predictions for a real image pr = D(x) to

the response y = 1 and predictions for the generated images pg = D(G(z)) to

the response y = −1 (Foster 2019). This results in the following loss function

for D:

min
D
− (Ex∼px [D(x)]− Ez∼pz [D(G(z))]), (2.17)

as presented by Foster (2019). For G the loss is calculated by comparing

the predicitons for generated images pg = D(G(z)) to the response y = 1.

Therefore, the WGAN-GP loss function for G results in:

min
G
− (Ez∼pz [D(G(z))]), (2.18)

as shown by Foster (2019).

Because the WGAN-GP algorithm allows the output predictions to grow

very large, which usually should be avoided in neural networks, an additional

constraint has to be placed on D. The additional requirement is that the

critic is a 1-Lipschitz continuous function. D satisfies this requirement when

it follows the equation with x1 and x2 being two subsequent samples:

|D(x1)−D(x2)|
|x1 − x2|

≤ 1, (2.19)

as shown by Foster (2019).

This equation requires a limit on the rate at which the predictions of two

subsequent samples can change. This requirement is enforced by the gradient

penalty algorithm, which includes a term in Ds loss function which penalizes

the model if the gradient norm of the critic derivates from 1 (Foster 2019).

Figure 2.8 shows the algorithm to calculate the WGAN-GP algorithm,

which uses Adam with shown parameters as the optimization algorithm. The

32

first step is to iterate k times through Ds training process, where in line 7,

the gradient penalty is added to the original D loss per batch sample. In line

8 the weights of D are updated with the Adam optimizer and the calculated

losses of a given batch. After k iterations Gs weights are updated in line 12

of the algorithm.

The advantage of WGAN-GP over other loss functions is the ability to

converge. This allows the training process to become more stable and allows

for a higher generator model complexity (Hui 2018b).

Figure 2.8: WGAN Gradient Penalty Algorithm taken from (Gulrajani et al.
2017)

2.2.4 WaveGAN Architecture

The WaveGAN architecture is capable of modeling raw audio waveforms and

producing up to one second of audio at a sampling rate of fs = 16000Hz

(Donahue, McAuley, and Puckette 2018). It is based on the DCGAN-

architecture presented in Radford, Metz, and Chintala (2015), which uses

convolutional networks in both the G and D.

DCGAN can generate images from a learned latent space; in contrary

33

WaveGAN’s objective is to produce raw audio data. Because audio data

is more likely to show periodicity than image data, the filters used in the

convolutional network need a higher receptive field than those used for image

generation. To achieve this, WaveGANs G uses a transposed convolution

operation, with a filter length of 25 and an upsampling factor of 4. D also

uses a filter length of 25 and a stride of 4 to mirror the generator (Donahue,

McAuley, and Puckette 2018).

Figure 2.9 shows the growth of the receptive field size within the Wave-

GAN architecture. Following results can be seen: The deeper the layer is

located in the network, the larger its receptive field grows. Hence, it could

be said that the deeper layers capture longterm structure in audio data, while

the first layers capture short term structure.

Figure 2.9: Growth of receptive field size in WaveGAN

Data encoding is 32-Bit float in G as well as in D. This leads to Wave-

GAN having a higher headroom than WaveNET, which is using 8-Bit µ-law

encoding (Oord et al. 2016). Using generative adversarial networks also has

34

the benefit, that sound generation can be parallelized, which allows the gen-

eration of up to 1 hour of audio in less than 2 seconds (Donahue, McAuley,

and Puckette 2018). The audio generation in WaveNET has to feedback out-

put audio data back into the input, which is much slower than WaveGANs

approach (Donahue, McAuley, and Puckette 2018; Oord et al. 2016).

Phase Shuffling

Generative models, which upsample by transposed convolution, are known

to produce checkerboard artifacts, as shown in figure 2.10.

Figure 2.10: Checkerboard Artifacts in generated images taken from (Odena,
Dumoulin, and Olah 2016)

Such periodic patterns are less common in images, so that the discrimi-

nator learns to reject them. In the field of audio signal processing, analogous

artifacts are perceived as pitched noise (Donahue, McAuley, and Puckette

2018). Those artifacts can overlap with frequencies from real data occurring

at specific phase positions, allowing D to reject those patterns, which can

restrain the optimization problem (Donahue, McAuley, and Puckette 2018).

To prevent D from learning those patterns, phase shuffling with hyperpa-

rameter n is applied to the feature maps, which modifies the phase from −n

to n before inputting it to the next layer of D. As G is already fed with a

uniformly distributed noise vector, this process just needs to be applied in D

(Donahue, McAuley, and Puckette 2018). This makes Ds job to distinguish

between real and fake harder.

35

Figure 2.11 shows the process of phase shuffling with n = 1. This process

is applied in every layer of the discriminator to perturb the phase of the

feature maps. n is sampled from a uniform distribution, and the missing

samples after shifting are filled via reflection.

Figure 2.11: Phase Shuffling Process taken from (Donahue, McAuley, and
Puckette 2018)

Model Architecture

Table 2.1 and 2.2 show the architectures of WaveGANs G and D respectively,

where b denotes the batch size, and c denotes the number of audio channels.

For the training of WaveGAN b was set to 64 and c to 1 (Donahue, McAuley,

and Puckette 2018). In table 2.1 it is shown how an output tensor with

shape (n, 16384, c) is crafted out of the input noise vector with a latent size

of 100. The upsampling takes place in the transposed convolution layers,

where stride corresponds to the upsampling factor.

36

Operation Input Shape Output Shape

Input z ∼ Uniform(−1, 1) (b, 100) (b, 100)
Dense (b, 100) (b, 16384)

Reshape (b, 16384) (b, 16, 1024)
ReLU (b, 16, 1024) (b, 16, 1024)

TransConv1D(Stride=4) (b, 16, 1024) (b, 64, 512)
ReLU (b, 64, 512) (b, 64, 512)

TransConv1D(Stride=4) (b, 16, 1024) (b, 256, 256)
ReLU (b, 256, 256) (b, 256, 256)

TransConv1D(Stride=4) (b, 256, 256) (b, 1024, 128)
ReLU (b, 1024, 128) (b, 1024, 128)

TransConv1D(Stride=4) (b, 1024, 128) (b, 4096, 64)
ReLU (b, 4096, 64) (b, 4096, 64)

TransConv1D(Stride=4) (b, 4096, 64) (b, 16384, c)
Tanh (b, 16384, c) (b, 16384, c)

Table 2.1: WaveGAN Generator Architecture

Table 2.2 shows WaveGANs D architecture. It can be observed that the

input and output shapes of the transposed convolution of G and convolution

operations of D are reversely mirrored. With this approach, D can classify

the given input samples real or fake.

The optimizer used for WaveGAN is Adam with α = 0.0001, which de-

scribes the learning rate and β1 = 0.5 and β2 = 0.9. The used loss algorithm

is the presented WGAN-GP, while the number k denotes the discriminator

updates per generator update, which is k = 5. The hyperparameter n of the

phase shuffling algorithm is set to n = 2 (Donahue, McAuley, and Puckette

2018).

37

Operation Input Shape Output Shape

Input x or G(z) (b, 16384, c) (b, 16384, c)
Conv1D(Stride=4) (b, 16384, c) (b, 4096, 64)
LReLU(α = 0.2) (b, 4096, 64) (b, 4096, 64))

PhaseShuffle(n = 2) (b, 4096, 64) (b, 4096, 64))
Conv1D(Stride=4) (b, 4096, 64) (b, 1024, 128)
LReLU(α = 0.22) (b, 1024, 128) (b, 1024, 128)
PhaseShuffle(n = 2) (b, 1024, 128) (b, 1024, 128)
Conv1D(Stride=4) (b, 1024, 128) (b, 256, 256)
LReLU(α = 0.2) (b, 256, 256) (b, 256, 256)

PhaseShuffle(n = 2) (b, 256, 256) (b, 256, 256)
Conv1D(Stride=4) (b, 256, 256) (b, 64, 512)
LReLU(α = 0.2) (b, 64, 512) (b, 64, 512)

PhaseShuffle(n = 2) (b, 64, 512) (b, 64, 512)
Conv1D(Stride=4) (b, 64, 512) (b, 16, 1024)
LReLU(α = 0.2) (b, 16, 1024) (b, 16, 1024)

Reshape (b, 16, 1024) (b, 16384)
Dense (b, 16384) (b, 1)

Table 2.2: WaveGAN Discriminator Architecture

38

3. The Data-Driven Wavetable Os-

cillator

The goal of this thesis is to present a deep learning model that can produce

single-cycle waveforms which can be interpolated by the model. The gener-

ated wavetables are then prepared for playback through a wavetable oscillator

which can automate the wavetable position of a given wavetable set produced

by the model. Hereby, one aim is to produce smooth interpolations between

wavetables with the help of the generative model. Furthermore, another aim

is to enable playback automations of the wavetable position without audible

artifacts.

The deep learning model is based on WaveGAN (Donahue, McAuley, and

Puckette 2018) and DCGAN (Radford, Metz, and Chintala 2015) because

GAN architectures are able to generate content in parallel, in contrast to

autoregressive models like WaveNET (Oord et al. 2016) or recurrent neural

networks like SampleRNN (Mehri et al. 2017). Other GAN architectures like

SpecGAN, which are based on waveform generation through spectrogram

images, are not promising for the use case of wavetable generation because of

their lossy conversion strategy back to raw audio using griffin-lim (Donahue,

McAuley, and Puckette 2018).

39

The proposed TableGAN model can generate n interpolations between

two chosen wavetables. The generation process is part of the following pre-

sented wavetable oscillator ecosystem consisting of five different steps:

• Preparation of audio files,

• training of proposed TableGAN model for wavetable generation,

• sampling and interpolating in the TableGAN latent space,

• post-processing resulting wavetables,

• and playing back wavetables via the proposed oscillator.

All implementations are using Python 3 as language and keras with ten-

sorflow -backend as deep learning framework. The single programs which are

providing the functionality and a trained model on an example dataset are

provided via the accompanying USB-Stick and their usage is explained in

appendix D.

3.1 Audio File Preparation

The preparation of audio files is needed to train the model with single-cycle

waveforms. For the preparation a selection of files gets analyzed with the

proposed YIN-algorithm (section 2.1.2). Then the files are sliced, given the

periods estimated by YIN. As a post-processing step the resulting wavetables

get smoothed at the edges to avoid discontinuities using the proposed tanh-

smoothing (section 2.1.2).

When the slicing and post-processing steps for every file are finished, it is

necessary to ensure that all files hold the same number of created wavetables.

If the files contain a different amount of tables, the file with the least number

40

of tables defines the maximum amount of tables per file. All remaining

tables within the files will be discarded. This is necessary because every

file represents a class in the context of a deep learning problem. When

creating batches for the training process, this approach leads to a uniformly

distributed set of training samples.

3.2 The proposed TableGAN Model

TableGAN is a deep learning model based on both WaveGAN and DCGAN.

The objective of the trained G is to be able to generate sounds from its

learned distribution pg, which should mimic the real data distribution pr.

The learning process takes place in an adversarial minimax-game, where D

and G are trying to maximize their opponents loss function while minimizing

their own.

Because TableGAN is supposed to produce single-cycle waveforms of

length LT = 4096 instead of LW = 16384, which is the length of WaveGANs

generated samples, it can leave out one layer of transposed convolution in G

and accordingly one layer of convolution in D.

This is also noticeable in figure 3.1, where the growth of the receptive

field is shown. It can be observed, that the last layer of convolution has a

receptive field of r4,TG = 2041 which is approximately half of the table length
LT
2

= 2048. This length is sufficient to observe longterm structure in the

audio data, like in WaveGAN, which has a receptive field size of r5,WG = 8185

at a length of LWG = 16384. The exponential growth of receptive field size is

achieved through both: stacking four convolutional layers and through using

subsampling with a stride s = 4 like in WaveGAN (Donahue, McAuley,

and Puckette 2018). It can be observed that the deeper the location of a

41

convolutional layer in D is, the more it is capable of recognizing long-term

structures. For G the exact opposite is true because the layer structure is

inverted.

Figure 3.1: Growth of receptive field size in TableGAN

The aim to synthesize single-cycle waveforms is an advantage compared

to WaveGAN because this results in the table length being the sampling rate

of the signal rather than the sampling rate of fs = 16000Hz which WaveGAN

uses. This is due to the fact that a single cycle of a waveform is sampled

at the length of the table, resulting in the wavetable having no specific sam-

pling rate. The table length of LT = 4096 results in a similar architecture

like DCGAN. While DCGANs G has an output dimension of (b, 64, 64, c),

TableGAN has an output dimension of (b, 4096, c). So TableGAN can be

considered a flattened modified 1D version of DCGAN (Radford, Metz, and

Chintala 2015). The main difference is that TableGAN is not using batch

normalization and has a different loss function and optimizer, using WGAN-

GP and ADAM, respectively like WaveGAN with the same hyperparameters.

42

Table 3.1 and table 3.2 show the layer architectures of TableGANs G and

D. The basic model uses no batch normalization and no phase shuffling. The

two alternative models marked with ∗ and ? use either batch normalization

or phase shuffling with hyperparameter n = 2 like in WaveGAN.

The implementation of the model uses the keras framework with ten-

sorflow backend. For G the layer class Conv2DTranspose is used because

keras does not provide an equivalent 1D version. To fit the input data to

the dimensionality of the transposed convolution operator, a dimension is

added with an extra layer preceding the transposed convolution and a layer

to extract the dimension again thereafter. All other implemented layers are

using the shapes defined in table 3.1 and 3.2. The implementation of the

WGAN-GP algorithm is taken from Lai (2017). The definitions of the basic

and the two alternative models can be found on the USB-Stick via Reposito-

ry/src/model_creation.

43

Operation Input Shape Output Shape

Input z ∼ Uniform(−1, 1) (b, 100) (b, 100)
Dense (b, 100) (b, 8192)

Reshape (b, 8192) (b, 16, 512)
ReLU (b, 16, 512) (b, 16, 512)

∗ BatchNorm (b, 16, 512) (b, 16, 512)
TransConv1D(Stride=4) (b, 16, 512) (b, 64, 256)

ReLU (b, 64, 256) (b, 64, 256)
∗ BatchNorm (b, 64, 256) (b, 64, 256)

TransConv1D(Stride=4) (b, 64, 256) (b, 256, 128)
ReLU (b, 256, 128) (b, 256, 128)

∗ BatchNorm (b, 256, 128) (b, 256, 128)
TransConv1D(Stride=4) (b, 256, 128) (b, 1024, 64)

ReLU (b, 1024, 64) (b, 1024, 64)
∗ BatchNorm (b, 1024, 64) (b, 1024, 64)

TransConv1D(Stride=4) (b, 1024, 64) (b, 4096, 1)
Tanh (b, 4096, 1) (b, 4096, 1)

Table 3.1: TableGAN Generator Architecture

44

Operation Input Shape Output Shape

Input x or G(z) (b, 4096, 1) (b, 4096, 1)
Conv1D(Stride=4) (b, 4096, 1) (b, 1024, 64)
LReLU(α = 0.02) (b, 1024, 64) (b, 1024, 64))

? PhaseShuffle(n = 2) (b, 1024, 64) (b, 1024, 64))
∗ BatchNorm (b, 1024, 64) (b, 1024, 64)

Conv1D(Stride=4) (b, 1024, 64) (b, 256, 128)
LReLU(α = 0.022) (b, 256, 128) (b, 256, 128))

? PhaseShuffle(n = 2) (b, 256, 128) (b, 256, 128)
∗ BatchNorm (b, 256, 128) (b, 256, 128)

Conv1D(Stride=4) (b, 256, 128) (b, 64, 256)
LReLU(α = 0.02) (b, 64, 256) (b, 64, 256)
∗ BatchNorm (b, 64, 256) (b, 64, 256)

? PhaseShuffle(n = 2) (b, 64, 256) (b, 64, 256)
Conv1D(Stride=4) (b, 64, 256) (b, 16, 512)
LReLU(α = 0.02) (b, 16, 512) (b, 16, 512)

? PhaseShuffle(n = 2) (b, 16, 512) (b, 16, 512)
∗ BatchNorm (b, 16, 512) (b, 16, 512)

Reshape (b, 16, 512) (b, 8192)
Dense (b, 8192) (b, 1)

Table 3.2: TableGAN Discriminator Architecture

3.3 Sampling the TableGAN Latent Space

To be able to create interpolations between two wavetables, the latent space

needs to be sampled. This is done by sampling two noise vectors z1 and z2

from a uniform distribution z ∼ Uniform(−1, 1).

To traverse between those two locations in latent space, an interpolation

algorithm is used. Interpolations are also often used in research to show that

a model has not just memorized how to mimic training data, but instead

successfully learned the underlying distribution (White 2017).

In this case, the interpolation is used to produce smooth transitions be-

tween two given wavetables by the network. These interpolations then are

45

post-processed and played back via the proposed wavetable oscillator. The

different interpolations can be chosen via the wavetable position parameter.

The objective hereby is to produce smooth, time-varying harmonic spectrum

changes without audible artifacts with the automation of the wavetable po-

sition.

White (2017) proposes to use the spherical linear interpolation algorithm

(slerp) instead of a normal linear interpolation because the latent space of

generative models is highly dimensional with an underlying gaussian or uni-

form prior. When using linear interpolation, it traverses through places

within that prior, which are very unlikely to show up (White 2017). The

used slerp algorithm is defined as:

slerp(q1, q2; t) =
sin(1− t)Ω

sin Ω
q1 +

sin(tΩ)

sin Ω
q2, (3.1)

where sin Ω = q1 · q2 and q1 · q2 is the dot product of unit vectors of q1 and q2
respectively, as proposed by Shoemake (1985). For t the inequality 0 ≥ t ≤ 1

has to be suffused. The created interpolations between z1 and z2 are then

fed into TableGAN, which makes the predictions and generates the resulting

wavetables.

3.3.1 Wavetable Post Processing

The post-processing step takes the generated wavetables and transforms ev-

ery wavetable into a wavetable stack, using the operations presented in chap-

ter 2.1.2. This process is neccessary to band limit the created tables and to

avoid aliasing artifacts when playing back the wavetables through the pro-

posed wavetable oscillator. The whole process uses the same parameters as

the operations in chapter 2.1.2.

46

For every wavetable created the wavetable stack which is composited

of WaveTable-objects holding the table, the table length and the highest

frequency at which the table can be played back is saved to a JSON -file.

The wavetable oscillator can then process those JSON -files.

3.4 Proposed Oscillator

The proposed wavetable oscillator can load multiple JSON -files and extract

the saved wavetable stacks consisting of WaveTable-objects. The wavetable

JSON -files which can be read by the oscillator are generated by either the

reference model synthesis engine presented in chapter 2.1.4 or by the sampling

and interpolation process of TableGAN presented in chapter 3.3.

The playback process is based on the linear interpolation wavetable os-

cillator algorithm presented in appendix C. All given wavetable stacks are

loaded into the oscillator. During playback, the table at a given wavetable

and wavetable stack position is chosen. When the wavetable position is be-

tween two neighboring tables, they are linearly interpolated.

47

4. Evaluation

The Evaluation of model performance is a critical part in comparing the

strengths and shortcomings of different model architectures. While GANs

are creating appealing results, there is still no consensus on how to measure

if one GAN performs better than another. This is due to the lack of robust

and consistent metrics, which is an ongoing area of research. The main issue

is that the probability of pg(x) cannot be computed explicitly, leading many

researchers to adapt to qualitative comparisons which are subjective and can

be misleading (Lucic et al. 2017).

To overcome those shortcomings two different quantitative measures have

been introduced, the Inception Score (IS) (Salimans et al. 2016) and the

Fréchet Inception Distance (FID) (Heusel et al. 2017). Both, IS and FID

presume a pretrained image-classifier. IS, which is widely adopted for GAN

measurement, is based on the idea, that generated samples should have low

entropy when being evaluated by the classifier, as well as being diverse and

covering all classes (Borji 2018).

FID was introduced, because IS does not compare real with fake data,

leading to IS being sensitive in favoring “memory GANs”. FID, however,

embeds generated samples into a feature space given by a specific layer of

Inception net. The embedded layer is considered a continuous multivariate

48

gaussian, where mean and covariance are estimated for both real and gener-

ated data. To quantify the quality of samples, the Fréchet Distance between

both Gaussians is calculated (Lucic et al. 2017). For evaluating TableGAN

FID is not practicable because Heusel et al. (2017) suggest using at least

20K samples for comparison between real and generated data. TableGAN,

however, was only trained on 119 different samples.

To adjust for the problems of IS in favoring “memory GANs” and be-

ing sensitive to mode collapse, different evaluation methods are additionally

applied to validate the different model architectures. The applied methods

are:

• Inception Score for evaluation of quality and diversity of generated

samples,

• evaluation of similarities within classes of training data using Pearson

Correlation Coefficient (PCC),

• evaluation of mode drop and mode collapse through comparison of class

distributions,

• nearest neighbor comparison between ground truth and different archi-

tectures to detect overfitting,

• evaluation of space continuity through interpolating the latent space to

ensure the model can produce novel samples.

4.1 TableGAN Training Process

Because of the limited computational budget, the models were trained for a

fixed number of iterations and not until convergence using the IS, like Don-

ahue, McAuley, and Puckette (2018) propose for WaveGAN. This restriction

49

had to be made because the training of a TableGAN model for 20K iterations

took about two hours on a Nvidia Tesla K80 -GPU, with checkpoints every 20

iterations. The calculation of the IS also took around 2 hours for one model.

By using IS as an early stopping criteria, this would have added around 2000

hours of extra time for training per model, which is not sufficient.

The approach taken here was, therefore, to train the three different model

architectures for 20K iterations and then measure the IS. The model which

scored the highest IS was trained again for 200K iterations, which is the num-

ber of iterations WaveGAN took to converge using IS (Donahue, McAuley,

and Puckette 2018). The training of TableGAN for 200K iterations took

about 20 hours to complete on the same system.

4.2 Inception Score (IS) Measures

The IS is the measure that is most widely adopted to GAN evaluation. It

uses a pre-trained classifier, which in the original implementation proposed

by Salimans et al. (2016), uses the Inception model. Using IS as an auto-

matic method to evaluate samples, correlates well with human evaluation as

Salimans et al. (2016) claim.

The classifier is applied to every generated image to get the conditional

label distribution p(y|x). Images that contain a clearly discernable object

should have a conditional label distribution with low entropy, meaning, that

the classifier can tell with high confidence to which class the image belongs.

Because it is expected that the model does not only learn images from one

class, the marginal distribution
∫
p(y|x = G(z))dz should have high entropy

(Salimans et al. 2016).

The combined metric, which is proposed, can be calculated by using the

50

Kullback-Leibler-Divergence (KL-Divergence), which measures the distance

between two distributions. The resulting IS can be calculated via:

exp(ExKL(p(y|x)||p(y))), (4.1)

as proposed by Salimans et al. (2016). With the KL-Divergence defined as:

KL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
, (4.2)

as introduced by Kullback and Leibler (1951).

Salimans et al. (2016) propose to evaluate the metric over an amount of

approximately 50K samples because a part of the metric measures diversity.

A model that generates diverse, high-quality images will score a high IS,

whereas a model that generates low-quality samples will score a low IS. The

upper bound of IS is defined by the number of class labels (Mack 2019).

The drawback of the IS is, that it favors “memory GANs” and is highly

sensitive to mode collapse. Models, which store all training samples and

models which collapse into creating just one sample per class can score a high

IS. Consequently IS does not take into account whether the real distribution

was learned, because it does not consider real samples when measuring the

score (Heusel et al. 2017).

4.2.1 Analyzation Process

Because this thesis treats generated audio samples instead of images, the

audio data first has to be converted into a corresponding visual representation

to be classified. Single generated wavetables have been converted to mel-

scaled spectrograms, using the Short-Time Fourier transform (STFT) with a

51

hop size of 512 samples and a window-length of 2048 samples. The resulting

frames which are created by the STFT are then scaled, using the mel-scale

with 26 mel-filters. The mel-scale is a perceptual scale that was judged by

human listeners to find equal distances in between different pitches (Stevens,

Volkmann, and Newman 1937). Applying the mel-scaling process to the

STFT, the resulting visual representations are close to how humans perceive

audio data.

For classification of generated wavetables, a specific classifier has been

trained. At first, a transfer-learning approach was taken, where the top layer

of the Inception model was changed to a softmax layer with seven outputs

following the total class count of the experiment. For the training process the

training data of TableGAN which included 119 different wavetables of seven

classes, was split into a test and a training set, where the test set included

four samples of every class and the training set included 12 samples of every

class.

Because this approach led to a classifier which scored just 65% on the

test data and was overfitting on the training data, the approach of Donahue,

McAuley, and Puckette (2018) was taken in creating a custom classifier.

The architecture of the used classifier is the same as in Donahue, McAuley,

and Puckette (2018) with four layers of batch-normalization, followed by a

convolutional layer with stride s = 1, a kernel k = (5, 5) and a relu activation

function and max-pooling. Those four layers are followed by a flatten layer

and another batch-normalization and finally a dense layer with a softmax

activation function. Only the input dimensions of the network have been

changed to 200 by 400 sized RGB images. This approach led to a classifier,

which scored 93, 75% on the test data.

For the analyzation, all models generated 50K samples which were then

52

converted to mel-scaled spectrograms to be classified and with the predictions

of the classifier the IS was calculated over all samples. The resulting scores

can be observed in table 4.1.

Architecture Inception Score

TableGAN 3.34± 0.02
TableGAN (200K) 2.26± 0.02

TableGAN with Batch Normalization 1.79± 0.01
TableGAN with Phase Shuffle 2.45± 0.02

Table 4.1: Model Inception Scores

It can be seen, that the basic TableGAN architecture, which was trained

for 20K iterations scores the highest IS with a standard deviation of 0.02.

This is the basic architecture without phase suffling and batch normalization.

The batch normalization architecture scores the worst IS, which could be

assumed as Gulrajani et al. (2017) propose to avoid batch normalization

when using WGAN-GP as a loss function. Interestingly, the architecture

using phase shuffling, scores a significantly worse IS than the basic TableGAN

architecture, while Donahue, McAuley, and Puckette (2018) showed that

WaveGAN scored the highest IS using phase shuffling in D. Also the basic

TableGAN architecture trained for 200K iterations scores a significantly lower

IS than the architecture which was trained for 20K iterations. When focusing

on IS, it can be assumed that a longer training duration is not an indicator

for better GAN performance.

53

4.3 Comparison between Test-Data Inner-Class

Similarities

In order to facilitate comparison of class distributions, the similarity of class

elements among themselves needs to be investigated. Taking the inner-class

similarities into account, allows for a more grounded assessment of different

evaluation outcomings.

For the analysis of similarities between audio-files, the Pearson Correla-

tion Coefficient (PCC) is utilized. The PCC analyzes how two signals are

correlated. When two signals are completely positively correlated, all points

on a scatterplot are lying on an ascending straight line which results in the

PCC being r = 1. When two signals are uncorrelated, meaning there are no

relationships between the two signals, the PCC is r = 0. When two signals,

however, are completely negatively correlated, all data points are lying on

a straight descending line (Papula 2016). This means that the two signals

have a phase offset of π . The PCC of input vectors x and y is calculated by:

r =

∑n
i=1 xiyi − nx̄ȳ√

(
∑n

i=1 x
2
i − nx̄2)(

∑n
i=1 y

2
i − nȳ2)

, (4.3)

as presented in Papula (2016).

To analyze the inner-class similarities the PCC of every sample among

themselves has been calculated and plotted in scatterplots using thin points

for the scatter plots. With this approach the overall inner-class similarity

trend can be visualized, where multiple correlation points are joining. Figure

4.1 shows the resulting scatter plots of all classes and table 4.2 shows the

means and standard deviation of the PCC per class.

54

Figure 4.1: Scatter-Plots of Correlation between Inner-Class Samples (a)
Bass Class (b) Bass 2 Class (c) Buzz Class (d) FFT Class (e) FM Class (f)
Lead Class (g) Piano Class

Class Mean Standard Deviation

Bass 0.78 ±0.35
Bass 2 0.62 ±0.27
Buzz 0.99 ±0.01
FFT 0.59 ±0.28
FM 0.23 ±0.45
Lead 0.59 ±0.38
Piano 0.82 ±0.18

Table 4.2: Mean and Standard Deviation of Inner-Class Similarities

When observing figure 4.1 along with table 4.2 it can be seen, that the

classes Bass, Buzz and Piano have the strongest correlations, with Buzz

55

clearly having the most prominent correlations within the group. The classes

Bass and Piano, however, have a significant higher standard deviation. This

diversification can also be seen in figure 4.1 (a) and (g).

The classes Bass 2, FFT and Lead all have a mean which is roughly

centered between the interval [0, 1] with all having quite high standard de-

viations, but all classes show a linear trend. The class FM, however, is

scattered, which can be seen in figure 4.1 (e).

When just taking these findings into account, it would be reasonable to

suggest that the learned TableGAN model would rather generate a sample

that could be classified as Buzz than FM. Although the underlying class

distribution is uniform, the chances for the model in choosing to generate a

sample from a specific class over another is significantly higher, because of

the diverse inner-class similarities.

4.4 Comparison between Model Class Distri-

butions

GANs are sensitive to failure in modeling the entire data distribution, while

still generating realistically looking images. Both, mode collapse and mode

drop, can occur as a result. Mode collapse happens when the generator

maps several input noise vectors to the same output. This leads to low

diversity in generated samples. Mode drop occurs when modes of the real

data distribution are ignored by the generated distribution because they are

difficult to represent.

To evaluate whether a model collapsed, Santurkar, Schmidt, and Madry

(2017) propose to train the model on a well-balanced dataset. Because of this,

all audio files were sliced into the same amount of wavetables in section 3.1.

56

To evaluate whether a GAN generated uniformly distributed data, a classifier

is trained on the dataset. The classifier then evaluates the generated data of

the models, and compares the results, using a bar chart (Santurkar, Schmidt,

and Madry 2017).

The classifier used in this case is the one created for the IS in section 4.2.

For the analysis of the class distributions, every model generated 50K sam-

ples, which were converted to mel-spectrograms using the same parameters

as in section 4.2. The resulting distributions are shown in figure 4.2.

Figure 4.2: Comparison of Model Class Distributions (a) Train Data (b)
Train Data Classified (c) Batch Norm (d) Phase Shuffle (e) No Batch Norm
(f) No Batch Norm (200K)

Figure 4.2 (a) shows the uniformly distributed train data, while figure

4.2 (b) depicts the evaluated train data by the classifier to show if certain

classes are preferred by the classifier. Figure 4.2 (c) and (d) show the class

distribution of the TableGAN model with batch normalization and without

batch normalization but trained for 200K iterations. Both models show se-

vere signs of mode collapse, as the probability for generating a sample from

class Bass 2 are at 80% and 70% respectively.

Also, the model which applies phase shuffling, is not uniformly dis-

tributed. Interestingly, the Piano class has a very low probability of being

generated by this model. All models have problems in generating samples

57

from the FFT class, and just the models without batch normalization are

capable of producing samples from the FM class.

It can be observed that the model with no batch normalization, which

was trained for 20K iterations, has a distribution that is closest to a uniform

distribution when comparing all models. However, even the model in figure

4.2 (e) shows signs of mode dropping because no samples from the Lead -class

were created.

4.5 Nearest Neighbor Comparison

The nearest neighbor comparison should detect overfitting in models. In

order to achieve this, generated samples from different models are shown

next to each other. For image generation models, normally the euclidean

distance is taken to find nearest neighbors between model outputs and the

training data.

The method to find the nearest neighbors in the audio domain is the

PCC, which was presented in section 4.3. The TableGAN model creates

four random wavetables. For those wavetables, the PCC gets calculated

over the whole training set to find the nearest neighbors which are found

computing argmax r, where r is the vector holding the PCC values per

generated wavetable. To find the nearest neighbors with competing models,

every model generates 1000 samples. Afterward, the PCC is computed over

the generated samples, and the nearest neighbors are chosen as shown above.

Figure 4.3 shows the nearest neighbors for all models and the ground truth

set.

It can be observed that both the ground truth set and the generated

images by the model without batch normalization (200K) are very similar

58

Figure 4.3: Nearest Neighbor Comparison

to each other. With the observations from section 4.3 and 4.2 the suspicion

arises, that the model without batch normalization (200K) is a “memory

GAN”, which memorized the distribution.

The other models show no signs of overfitting as every model created

samples that are similar but not the same as the ground truth data. However,

the model without batch normalization (20K) produces wavetables which are

closer to the ground truth data than the other competitors (except for the

200K model, which overfits).

4.6 Evaluation of Space Continuity

To evaluate what a generative model has learned, the latent space of the

model can be explored. This is done by interpolating between two points

59

using the slerp interpolation method presented in section 3.3. Interpolating

the latent space evaluates the level of detail a model was able to extract.

If the generated wavetables between two points are reasonable, this method

can provide another sign that a model is capable of producing new samples

instead of just memorizing the test data (Borji 2018). Figure 4.4 shows the

interpolations every model has created between two specific points.

Figure 4.4: Model Interpolations between (a) Batch Norm (b) Phase Shuffle
(c) No Batch Norm (d) No Batch Norm (200K)

Examining figure 4.4 shows the interpolation between two latent points

of all four models. It can be seen that the model with phase shuffling (b) and

the model without batch normalization (c) are producing smooth interpola-

tions. Every successive frame is different and blends smoothly into the next.

However, the model with batch normalization (a) and the model without

batch normalization which was trained for 200K iterations are showing signs

of mode collapse and especially (d) seems to be a “memory GAN”.

This assumption is strengthened when comparing the animated GIFs and

60

audio-files which interpolate between the two points in latent space over

128 steps, which can be found at [media files for interpolation process] or

on the accompanying USB-Stick via Evaluation Files/GIFS and Evaluation

Files/AUDIO. [(d) GIF] and [(d) audio-file] show the interpolation process

of the model without batch normalization, which was trained for 200K itera-

tions. Those two representations strengthen the assumption further, that (d)

is a “memory GAN” because of the abrupt changes in contrast to the smooth

ones in the models (c) and (b).

To support this, [(c) GIF] and [(c) audio-file] are showing that the model

without batch normalization is producing smooth interpolations without

abrupt changes like in (d).

61

https://drive.google.com/open?id=1JRJrJT0VstwgzxoxoPKE4USiIFX2BNsi
https://drive.google.com/open?id=13NAkwfByn4t1x3rZiO2zcq7l1g0mQJMA
https://drive.google.com/open?id=1yWaIOjSsxT8CqzpmSBdgg0tugVO1vdOy
https://drive.google.com/open?id=1sLM2LhXGCOdBFywlufcaTOy0GEN5UtML
https://drive.google.com/open?id=1aXfk5eUR-5-pOHVWu1n1wYzHGIdufdlk

5. Results, Discussion and Limita-

tions

When considering the results of the evaluation, it can be drawn to conclu-

sion that all models are sensitive to both mode dropping, as well as mode

collapse. Reviewing figure 4.2 it can be seen that the TableGAN model with

batch normalization dropped the Lead and FM class and has a probability of

approximately 80% in creating a sample from the Bass 2 class. The model

which incorporated phase shuffling dropped two classes, namely FM and,

interestingly, Piano, the second most prominent in all other model distribu-

tions. The model which is most uniformly distributed is the model without

batch normalization which was trained for 20K iterations. But even this

model dropped the Lead class.

Observing figure 4.1 and table 4.2 it can be seen that the low degree of

correlation within the FM class can be considered a factor in leading to the

models having difficulties in learning the class representation. When looking

at the nearest neighbor comparison shown in figure 4.3 and the evaluation of

space continuity in figure 4.4, it can be seen that the TableGAN model with-

out batch normalization, which was trained for 20K iterations, represents

the best trade-off between wavetable similarity to the ground truth set and

62

the highest diversity which could be captured within the latent space. The

model utilizing batch normalization and the model without batch normal-

ization (200K) were not able to capture a diverse latent space and produce

interpolations with abrupt changes. Especially the model without batch nor-

malization (200K) has just learned the training set thus being considered a

“memory GAN”. It is interesting to see how the extra training time led the

model to overfit on the data set.

Solely the model which utilizes phase shuffling creates smooth interpo-

lations besides the basic TableGAN model. Those models learned the rep-

resentations of the ground truth set the best by looking at the IS of the

models. The model using phase shuffling and the basic TableGAN model

score the highest IS with 2.45 and 3.34 respectively. Using the interpolations

created by TableGAN, creates smooth fades between two random wavetables,

when played back with the proposed oscillator system. Audio examples with

automated wavetable position can be found in [Audio Examples] or on the

USB-Stick at Evaluation Files/Synthesized TableGAN Examples. An area of

ongoing research is trying to train both models until convergence, using a

larger and more diverse data set.

63

https://drive.google.com/open?id=18pS90K0zJbHpdOhZUWKAJFw8kBW0S6AF

6. Conclusion and Future Direc-

tions

This thesis examined the possibility of using generative deep learning models

for wavetable creation and interpolations, which are ready for playback using

a proposed oscillator framework.

For generating wavetables TableGAN was introduced which is based on

both WaveGAN and DCGAN. TableGAN is able to be trained on a dataset

of classes containing single-cycle waveforms and can afterwards synthe-

size wavetables using latent space representations and interpolate between

two randomly selected representations. The resulting interpolations can

be played back with a proposed oscillator system which has the ability to

automate the wavetable position to create sounds which are evolving har-

monically over time. The interesting part of the created interpolations is

that the model creates those interpolations by itself through latent space

representations. The resulting interpolations are very different from sim-

ple linear interpolation methods between two wavetables, providing artists

and sound designers with an additional new tool for multiple sound design

purposes.

All tools for creating single-cycle waveforms from audio files of arbritrary

64

length have been provided with the USB-Stick and can be used to create new

datasets along with scripts for interpolating the latent space of the result-

ing model and rendering playback of interpolations to audio files using the

oscillator framework.

Even though the model is capable of learning the general underlying data

representations and synthesizing audio, the distribution of training data was

not fully captured. Proposals for future directions in this field would include:

• Creation of a larger well-balanced dataset using single-cycle waveforms

with high inner-class correlations,

• training of TableGAN models without batch normalization and with

phase shuffling till convergence,

• investigation of the possibility to train a conditional TableGAN based

on Lee et al. (2018).

65

List of Acronyms

ANN Artificial Neural Networks
AMDF Average Magnitude Difference Function
CNN Convolutional Neural Network
DNN Deep Neural Network
D Discriminator
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
FPU Floating-Point Unit
FID Fréchet Inception Distance
G Generator
GAN Generative Adversarial Network
IS Inception Score
IDFT Inverse Discrete Fourier Transform
KL-Divergence Kullback-Leibler Divergence
ML Machine Learning
MLP Multi Layer Perceptron
PCC Pearson Correlation Coefficient
PCM Pulse Code Modulation
RNN Recurrent Neural Network
S&S Sample & Synthesis
slerp spherical linear interpolation
STFT Short-Time Fourier transform
TLU Threshold Logic Unit
WGAN-GP Wasserstein GAN gradient penalty

66

List of Figures

2.1 Comparison of (a) AMDF and (b) YIN Pitch Detection Per-
formance . 10

2.2 Representation of the 8 first wavetables of a square wave
within a wavetable stack, with rs = 2 15

2.3 Cross-Correlation Process (a) Sine Wave without shift (b) Sine
Wave shifted by π (c) Cross-Correlation (d) Corrected Sine Wave 16

2.4 Comparison Hanning-Window Smoothing and tanh-smoothing
(a) Sawtooth smoothed with Hanning (b) Sawtooth smoothed
with tanh . 17

2.5 Comparison of Interpolation Algorithms with table length of
L = 1024 (a) Truncation, (b) Linear Interpolation, (c) La-
grange Interpolation . 21

2.6 Comparison of Interpolation Algorithms with table length of
L = 4096 (a) Truncation, (b) Linear Interpolation, (c) La-
grange Interpolation . 22

2.7 Threshold Logic Unit (Géron 2017) 25
2.8 WGAN Gradient Penalty Algorithm taken from (Gulrajani et

al. 2017) . 33
2.9 Growth of receptive field size in WaveGAN 34
2.10 Checkerboard Artifacts in generated images taken from (Odena,

Dumoulin, and Olah 2016) . 35
2.11 Phase Shuffling Process taken from (Donahue, McAuley, and

Puckette 2018) . 36

3.1 Growth of receptive field size in TableGAN 42

4.1 Scatter-Plots of Correlation between Inner-Class Samples (a)
Bass Class (b) Bass 2 Class (c) Buzz Class (d) FFT Class (e)
FM Class (f) Lead Class (g) Piano Class 55

67

4.2 Comparison of Model Class Distributions (a) Train Data (b)
Train Data Classified (c) Batch Norm (d) Phase Shuffle (e)
No Batch Norm (f) No Batch Norm (200K) 57

4.3 Nearest Neighbor Comparison 59
4.4 Model Interpolations between (a) Batch Norm (b) Phase Shuf-

fle (c) No Batch Norm (d) No Batch Norm (200K) 60

68

List of Tables

2.1 WaveGAN Generator Architecture 37
2.2 WaveGAN Discriminator Architecture 38

3.1 TableGAN Generator Architecture 44
3.2 TableGAN Discriminator Architecture 45

4.1 Model Inception Scores . 53
4.2 Mean and Standard Deviation of Inner-Class Similarities . . . 55

69

Bibliography

[SVN37] Sheridan S. Stevens, John E. Volkmann, and E. B. Newman.
“A Scale for the Measurement of the Psychological Magnitude
Pitch”. In: 1937.

[Sha49] C. E. Shannon. “Communication in the Presence of Noise”. In:
Proceedings of the IRE 37.1 (Jan. 1949), pp. 10–21. issn: 0096-
8390. doi: 10.1109/JRPROC.1949.232969.

[KL51] S. Kullback and R. A. Leibler. “On Information and Sufficiency”.
In: Ann. Math. Statist. 22.1 (Mar. 1951), pp. 79–86. doi: 10.
1214/aoms/1177729694. url: https://doi.org/10.1214/
aoms/1177729694.

[Ros+74] M. Ross et al. “Average magnitude difference function pitch ex-
tractor”. In: IEEE Transactions on Acoustics, Speech, and Signal
Processing 22.5 (Oct. 1974), pp. 353–362. issn: 0096-3518. doi:
10.1109/TASSP.1974.1162598.

[Sho85] Ken Shoemake. “Animating rotation with quaternion curves”. In:
SIGGRAPH. 1985.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
“Learning internal representations by error propagation”. In:
1986.

[Bri96] Robert Bristow-Johnson. “Wavetable Synthesis 101, A Funda-
mental Perspective”. In: (Jan. 1996).

[CK02] Alain de Cheveigné and Hideki Kawahara. “YIN, a fundamental
frequency estimator for speech and music.” In: The Journal of
the Acoustical Society of America 111 4 (2002), pp. 1917–30.

[Zöl08] Udo Zölzer, ed. Digital Audio Signal Processing. 2nd ed. Chich-
ester, West Sussex: John Wiley & Sons Ltd, 2008.

[Rus09] Martin Russ, ed. Sound Synthesis and Sampling. 3rd ed. Burling-
ton, MA: Focal Press, 2009.

70

https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1109/TASSP.1974.1162598

[Smi10] Julius O. Smith. Physical Audio Signal Processing. Stanford
CCRMA, 2010. url: http://ccrma.stanford.edu/~jos/
pasp/. (accessed: 16.06.2019).

[BL11] Richard Boulanger and Victor Lazzarini, eds. The Audio Pro-
gramming Book. Cambridge, Massachusetts: The MIT Press,
2011.

[Muh11] Ghulam Muhammad. “Extended average magnitude difference
function (EAMDF) based pitch detection.” In: Int. Arab J. Inf.
Technol. 8 (Apr. 2011), pp. 197–203.

[Zöl11] Udo Zölzer, ed. DAFX: Digital Audio Effects. 2nd ed. Chichester,
West Sussex: John Wiley & Sons Ltd, 2011.

[FV12] Andreas Franck and Vesa Välimäki. “Higher-Order Integrated
Wavetable Synthesis”. In: Sept. 2012, pp. 245–252.

[Red12] Nigel Redmon. A wavetable oscillator—Part 2. 2012. url:
https://www.earlevel.com/main/2012/05/08/a-wavetable-
oscillator%E2%80%94part-2/. (accessed: 13.06.2019).

[Goo+14] Ian J. Goodfellow et al. “Generative Adversarial Nets”. In: NIPS.
2014.

[Pir15] Will Pirkle, ed. DESIGNING SOFTWARE SYNTHESIZER
PLUG-INS IN C++: FOR RACKAFX, VST3 AND AUDIO
UNITS. Burlington, MA: Focal Press, 2015.

[RMC15] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised
Representation Learning with Deep Convolutional Generative
Adversarial Networks”. In: CoRR abs/1511.06434 (2015).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. http://www.deeplearningbook.org. MIT Press,
2016.

[Luo+16] Wenjie Luo et al. “Understanding the Effective Receptive Field
in Deep Convolutional Neural Networks”. In: NIPS. 2016.

[ODO16] Augustus Odena, Vincent Dumoulin, and Chris Olah. “Decon-
volution and Checkerboard Artifacts”. In: Distill (2016). doi:
10.23915/distill.00003. url: http://distill.pub/2016/
deconv-checkerboard.

[Oor+16] Aäron van den Oord et al. “WaveNet: A Generative Model for
Raw Audio”. In: CoRR abs/1609.03499 (2016). arXiv: 1609 .
03499. url: http://arxiv.org/abs/1609.03499.

71

http://ccrma.stanford.edu/~jos/pasp/
http://ccrma.stanford.edu/~jos/pasp/
https://www.earlevel.com/main/2012/05/08/a-wavetable-oscillator%E2%80%94part-2/
https://www.earlevel.com/main/2012/05/08/a-wavetable-oscillator%E2%80%94part-2/
http://www.deeplearningbook.org
https://doi.org/10.23915/distill.00003
http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499

[Pap16] Lothar Papula, ed. Mathematik für Ingenieure und Naturwis-
senschaftler Band 3 Vektoranalysis, Wahrscheinlichkeitsrech-
nung, Mathematische Statistik, Fehler- und Ausgleichsrechnung.
7th ed. Wiesbaden, Germany: Springer Fachmedien, 2016.

[Sal+16] Tim Salimans et al. “Improved Techniques for Training GANs”.
In: ArXiv abs/1606.03498 (2016).

[AB17] Martín Arjovsky and Léon Bottou. “Towards Principled Meth-
ods for Training Generative Adversarial Networks”. In: ArXiv
abs/1701.04862 (2017).

[BHP17] Jean-Pierre Briot, Gaëtan Hadjeres, and François Pachet. “Deep
Learning Techniques for Music Generation - A Survey”. In: ArXiv
abs/1709.01620 (2017).

[Eng+17] Jesse Engel, Cinjon Resnick, et al. “Neural Audio Synthe-
sis of Musical Notes with WaveNet Autoencoders”. In: CoRR
abs/1704.01279 (2017). arXiv: 1704 . 01279. url: http : / /
arxiv.org/abs/1704.01279.

[Gér17] Aurélien Géron, ed. Hands-On Machine Learning with Scikit-
Learn and TensorFlow. 3rd ed. Sebastopol, CA: O’Reilly Media
Inc., 2017.

[Gul+17] Ishaan Gulrajani et al. “Improved Training of Wasserstein
GANs”. In: NIPS. 2017.

[Heu+17] Martin Heusel et al. “GANs Trained by a Two Time-Scale Update
Rule Converge to a Local Nash Equilibrium”. In: NIPS. 2017.

[Hie17] Dang Ha The Hien. A guide to receptive field arithmetic for Con-
volutional Neural Networks. 2017. url: https://medium.com/
mlreview/a-guide-to-receptive-field-arithmetic-for-
convolutional- neural- networks- e0f514068807. (accessed:
08.08.2019).

[Lai17] Shaofan Lai. Implement improved WGAN with Keras-2.x. 2017.
url: http://shaofanlai.com/post/10. (accessed: 18.08.2019).

[Luc+17] Mario Lucic et al. “Are GANs Created Equal? A Large-Scale
Study”. In: NeurIPS. 2017.

[Meh+17] Soroush Mehri et al. “SampleRNN: An Unconditional End-to-
End Neural Audio Generation Model”. In: ArXiv abs/1612.07837
(2017).

72

http://arxiv.org/abs/1704.01279
http://arxiv.org/abs/1704.01279
http://arxiv.org/abs/1704.01279
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
http://shaofanlai.com/post/10

[SSM17] Shibani Santurkar, Ludwig Schmidt, and Aleksander Madry. “A
Classification-Based Study of Covariate Shift in GAN Distribu-
tions”. In: ICML. 2017.

[Whi17] Tom White. “Sampling Generative Networks”. In: 2017.

[Bor18] Ali Borji. “Pros and cons of GAN evaluation measures”. In: Com-
puter Vision and Image Understanding 179 (2018), pp. 41–65.

[DMP18] Chris Donahue, Julian J. McAuley, and Miller Puckette. “Adver-
sarial Audio Synthesis”. In: ICLR. 2018.

[Hui18a] Jonathan Hui. GAN — A comprehensive review into the gang-
sters of GANs (Part 1). 2018. url: https://medium.com/
@jonathan _ hui / gan - a - comprehensive - review - into -
the-gangsters-of-gans-part-1-95ff52455672. (accessed:
04.08.2019).

[Hui18b] Jonathan Hui. GAN — Wasserstein GAN & WGAN-GP. 2018.
url: https://medium.com/@jonathan_hui/gan-wasserstein-
gan-wgan-gp-6a1a2aa1b490. (accessed: 04.08.2019).

[Hui18c] Jonathan Hui. GAN — Why it is so hard to train Genera-
tive Adversarial Networks! 2018. url: https://medium.com/
@jonathan _ hui / gan - why - it - is - so - hard - to - train -
generative - advisory - networks - 819a86b3750b. (accessed:
04.08.2019).

[Lee+18] Chae Young Lee et al. “Conditional WaveGAN”. In: ArXiv
abs/1809.10636 (2018).

[Eng+19] Jesse Engel, Kumar Krishna Agrawal, et al. “GANSynth: Ad-
versarial Neural Audio Synthesis”. In: International Conference
on Learning Representations. 2019. url: https://openreview.
net/forum?id=H1xQVn09FX.

[Fos19] David Foster, ed. Generative Deep Learning Teaching Machines
to Paint, Write, Compose, and Play. 1st ed. Sebastopol, CA:
O’Reilly Media Inc., 2019.

[Mac19] David Mack. GAN — A comprehensive review into the gang-
sters of GANs (Part 1). 2019. url: https://medium.com /
octavian-ai/a-simple-explanation-of-the-inception-
score-372dff6a8c7a. (accessed: 18.08.2019).

[Pur+19] Hendrik Purwins et al. “Deep Learning for Audio Signal Process-
ing”. In: IEEE Journal of Selected Topics in Signal Processing 13
(2019), pp. 206–219.

73

https://medium.com/@jonathan_hui/gan-a-comprehensive-review-into-the-gangsters-of-gans-part-1-95ff52455672
https://medium.com/@jonathan_hui/gan-a-comprehensive-review-into-the-gangsters-of-gans-part-1-95ff52455672
https://medium.com/@jonathan_hui/gan-a-comprehensive-review-into-the-gangsters-of-gans-part-1-95ff52455672
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://openreview.net/forum?id=H1xQVn09FX
https://openreview.net/forum?id=H1xQVn09FX
https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a
https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a
https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a

[VL19] Sean Vasquez and Marshall Lewis. “MelNet: A Generative Model
for Audio in the Frequency Domain”. In: ArXiv abs/1906.01083
(2019).

74

Appendices

75

Appendix A

1 import numpy as np

2

3

4 def truncating_wt_osc (out , tab le , table_len , block_len ,

frequency , sample_rate) :

5 curphase = 0 .0

6 i n c r = (f requency / sample_rate) ∗ tab le_len

7

8 for i in range (block_len) :

9 index = int (curphase)

10 out [i] = tab l e [index]

11

12 curphase += in c r

13

14 while curphase >= table_len :

15 curphase −= table_len

76

16

17 while curphase < 0 :

18 curphase += table_len

19

20 return out

77

Appendix B

1 import numpy as np

2

3

4 def l inear_wt_osc (out , tab le , table_len , block_len ,

frequency , sample_rate) :

5 curphase = 0 .0

6 i n c r = (f requency / sample_rate) ∗ tab le_len

7 print (block_len)

8 for i in range (block_len) :

9 index = int (curphase)

10 f r a c = curphase − index

11 a = tab l e [index]

12 b = tab l e [(index + 1) % table_len]

13

14 out [i] = a + (b − a) ∗ f r a c

15

78

16 curphase += in c r

17

18 while curphase >= table_len :

19 curphase −= table_len

20

21 while curphase < 0 :

22 curphase += table_len

23

24 return out

79

Appendix C

1 import numpy as np

2

3 class Lagrange Inte rpo la to r :

4 def __init__(s e l f , sample_rate , f requency ,

block_length) :

5 s e l f . phase = 0 .0

6 s e l f . __block_length = block_length

7 s e l f . increment = frequency / sample_rate

8

9 def proce s s (s e l f , t ab l e) :

10 phase = s e l f . phase

11 increment = s e l f . increment

12 table_len = len (t ab l e)

13 block_length = s e l f . __block_length

14

15 output = np . empty (block_length)

80

16

17 for i in range (block_length) :

18 j = int (phase ∗ tab le_len)

19 x = np . empty (4 , dtype=int)

20 y = np . empty (4)

21 x [0] = (j − 1) % table_len

22 x [1] = j % table_len

23 x [2] = (j + 1) % table_len

24 x [3] = (j + 2) % table_len

25

26 output [i] = s e l f . __calculate_lagrange (x ,

tab le , 4 , phase ∗ tab le_len)

27

28 phase += increment

29

30 i f phase >= 1 . 0 :

31 phase −= 1.0

32

33 return output

34

35 def __calculate_lagrange (s e l f , x , tab le , table_len ,

phase) :

36 in te rpo la ted_va lue = 0 .0

37

38 for v in range (tab le_len) :

39 l = 1 .0

40 for j in range (tab le_len) :

81

41 i f j != v :

42 l ∗= (phase − x [j]) / (x [v] − x [j])

43

44 inte rpo la ted_va lue += l ∗ t ab l e [x [v]]

45

46 return i n t e rpo la ted_va lue

82

Appendix D

Wavetable Creation from Audio Files For synthesizing wavetables

from audio files, a command-line program was implemented, which can be

found on the accompanying USB-Stick via

Repository/src/wavetable_creation/create_reference_tables.py. The pro-

gram takes the argument -i specifying the input path to audio files and -o

specifying the output directory, where wavetables should be saved.

The argument -s tells the algorithm whether to apply the in chapter 2.1.2

proposed tanh-smoothing or not. The argument -m specifies the maximum

number of tables to create from one file and the parameter -f enables fast-

wav or not, depending on whether the input audio is encoded in 16-Bit PCM

or 32-Bit PCM float (f = true), or f = false when another PCM format is

used to enable faster encoding via the scipy library when f = true (Donahue,

McAuley, and Puckette 2018).

The audio files get analyzed file by file, and at first, all cycles are extracted

using the methods from chapter 2.1.2. With those wavetables, created, they

get properly phase aligned using the cross-correlation function shown in chap-

ter 2.1.2. Then wavetable stacks are built, using the operations proposed in

83

chapter 2.1.2, before saving every wavetable stack as a JSON -file to disk

which can be loaded and played back via the proposed wavetable oscillator.

Audio File Preperation To extract single-cycle waveforms out of a file

the provided command-line app, which can be found on the USB-Stick at

Repository/src/wavetable_creation/create_model_training_tables.py, needs

to be invoked with the argument -i and a string which points to an audio file

directory. The argument -o specifies where the output directory containing

the generated wavetables is created. With the argument -m the maximum

number of wavetables can be adjusted, the default value is set to m = 64.

The boolean argument -s sets whether tanh-smoothing should be applied to

avoid discontinuities, and -f specifies whether the input audio is encoded in

16-Bit PCM or 32-Bit PCM float (f = true), or f = false when another

PCM format is used to enable faster encoding via the scipy library when

f = true (Donahue, McAuley, and Puckette 2018).

The file preparation is being executed for every file in the provided input

directory. In the first place, the period of the file is estimated using YIN,

which is described in chapter 2.1.2. When the first period is estimated, the

first slice of the file is extracted. This slice is then stretched to the wavetable

length of L = 4096 samples, using linear interpolation (chapter 2.1.3), and

the DC component is filtered. This process is repeated until either the end

of the audio file or the maximum number of tables are reached.

Subsequently, the phases of the analyzed files are aligned using the cross-

correlation algorithm (chapter 2.1.2). If the argument s = true, the edges of

the wavetables are smoothed using the previously described tanh-smoothing

(chapter 2.1.2).

84

Sampling the TableGAN Latent Space The console application for

generating the interpolated wavetables can be found on the USB-Stick via

Repository/src/wavetable_creation/create_model/interpolated_tables.py.

When starting the application, the command line argument -i determines the

input model with choices for batch_norm, n_batch_norm, phase_shuffle and

n_batch_norm200K, representing the four different created models.

The command line argument -o determines the output directory within

which the wavetables are saved and the parameter -w defines the wavetable

prefix names, resulting in the namingconvention

<wavetablename>_<number>.json. The last parameter -n defines the total

number of interpolations created by TableGAN.

Wavetable Oscillator The command line app of the wavetable oscillator

can be found on the USB-Stick via

Repository/src/wavetable_oscillation/wavetable_oscillator.py. It can be

started with the input argument -i and a given input folder, where the

JSON -files are residing. The input argument -o sets the output path, where

the synthesized wave-file should be saved. The input arguments -p and -w

are boolean arguments that determine whether the pitch and wavetable po-

sition should be automated, respectively. The argument -f sets the playback

frequency in Hz and the parameter -l sets the playback duration in seconds.

With those defined settings, the oscillator synthesizes a sound with the given

parameters offline and saves it into the specified output directory.

85

Appendix E

Contents of the accompanying USB-Stick

1. Digital copy of the Thesis.

2. Repository with accompanying code.

3. Dataset of 119 single-cycle waveforms.

4. Evaluation files of TableGAN interpolations.

86

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct

or indirect sources used are acknowledged as references. I am aware that the

thesis in digital form can be examined for the use of unauthorized aid and in

order to determine whether the thesis as a whole or parts incorporated in it

may be deemed as plagiarism. For the comparison of my work with existing

sources I agree that it shall be entered in a database where it shall also

remain after examination, to enable comparison with future theses submitted.

Further rights of reproduction and usage, however, are not granted here. This

paper was not previously presented to another examination board and has

not been published.

. .

city, date

. .

signature

87

	Introduction
	Technical Background
	Wavetable Synthesis
	Related Synthesis Forms
	Wavetable Creation
	Wavetable Oscillators
	The Reference Model Wavetable Synthesis Process

	Data Driven Sound Generation
	Deep Learning Background
	Convolutional Neural Networks (CNNs)
	Generative Adversarial Networks (GANs)
	WaveGAN Architecture

	The Data-Driven Wavetable Oscillator
	Audio File Preparation
	The proposed TableGAN Model
	Sampling the TableGAN Latent Space
	Wavetable Post Processing

	Proposed Oscillator

	Evaluation
	TableGAN Training Process
	Inception Score (IS) Measures
	Analyzation Process

	Comparison between Test-Data Inner-Class Similarities
	Comparison between Model Class Distributions
	Nearest Neighbor Comparison
	Evaluation of Space Continuity

	Results, Discussion and Limitations
	Conclusion and Future Directions
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography
	Appendices
	
	
	
	
	

