
Kiel University of Applied Sciences

MIP1, MIP2, MIP3

Technical Report

Implementation of a Distributed AI Driven
Audio Sample Manager for Drum Sound

Tagging, Clustering and Recommendations

Niklas Wantrupp (928817)

Course of Studies: Information Engineering

Supervisor:
Prof. Dr. Robert Manzke

July 15, 2021

Contents

1 Introduction 3

2 Technical Background 4
2.1 Classification Tasks . 4
2.2 Feature Representation of audio signals in Machine Learning 4
2.3 MUSICNN . 6
2.4 Transfer Learning . 7
2.5 Recommendation Systems . 7
2.6 k-Nearest Neighbor (k-NN) . 8

3 Development Environment 10

4 Drumsample Models 11
4.1 Drumsample Dataset . 11
4.2 Drumsample Tagger . 12

4.2.1 Model Structure . 12
4.2.2 Training and Model Selection . 13
4.2.3 Validation . 14

4.3 k-NN based Custom Tagger and Recommendation System 15
4.3.1 Feature Selection . 15
4.3.2 Custom Tagger Structure . 15
4.3.3 Recommendation System Structure . 16

4.4 Model Package Implementation . 16

5 System Design 19
5.1 System Overview . 19
5.2 Database-Model . 20
5.3 User-Authentication . 20
5.4 REST-API . 21
5.5 Frontend . 22

6 Conclusion and Limitations 23

Appendices 26

A Backend Server Component Diagram 26

B Frontend Server Component Diagram 27

C REST-API Endpoint Description 28

1

Abbreviations
AI Artificial Intelligence
Ajax Asynchronous JavaScript and XML
API Application Programming Interface
CMVN Cepstral mean and variance normalization
CNN Convolutional Neural Network
DCT Discrete Cosine Transform
DNN Deep Neural Network
JWT Json Web Token
k-NN k-Nearest Neighbor
MFCC Mel Frequency Cepstral Coefficients
MSD Million Song Dataset
MTT MagnaTagATune
REST Representational State Transfer
RS Recommendation System
STFT Short Time Fourier Transformation
UI User Interface

2

1 Introduction

Audio industry professionals tend to collect enormous amounts of audio data within their production
environment. Foley artists use different kinds of recorded sounds when working on film audio, music
producers have libraries of different musical instruments to choose from and game sound designers also
have a vast amount of audio files to choose from when designing soundscapes for games.

The process of assembling and manually tagging different audio files takes a huge amount of effort
and is extremely time consuming. Audio professionals have to manually listen to all sounds within
their library and then introduce meaningful tags to make the vast amount of files accessible for later
usage in the production process. Furthermore, the process of finding the right sound in production
also can cost a lot of time for the engineer.

To overcome these shortcomings, this project investigates the utilization of artificial intelligence
for automatic audio tagging, clustering and recommendation and then the created models are used
to implement a distributed audio sample manager. The required data for model training is extracted
from the open source online sound library Freesound1. In order to curate a representative data set and
to refine the scope of the project, solely drum sounds will be used to train the model. Audio sample
tagging models are already well studied and thus a Transfer Learning Approach is chosen where a pre-
trained MUSICNN model presented by Pons and Serra [15] is chosen and further modified to adapt to
the specific use case of drum sound tagging.

The implemented recommendation system and custom audio tagger are both based on k-Nearest
Neighbor classifiers (k-NN), working with normalized Mel Frequency Cepstral Coefficients (MFCC) to
allow for high accuracy audio recommendation and user customized tagging.

The system is implemented and deployed, using web technologies to allow for user access via web
browsers. The backend is built by using the Python Framework Flask to implement a REST-API
which exposes all required model computations to the frontend which will use Angular to implement
the UI.

1Freesound.org

3

https://freesound.org/

2 Technical Background

To introduce the topic of musical motivated Machine Learning, this chapter introduces the main
concepts which were applied during the course of the project. At first, the concept of classification
problems is tackled before getting into feature extraction for audio tasks. After that, the MUSICNN
models and the concept of Transfer Learning are introduced to get an idea on which concepts the
projects Drumsample Base Tagger (4.2) is built on, before coming to Recommendation Systems and k-
Nearest Neighbor classifiers to learn on what methodologies the Drumsample Recommendation System
and Drumsample Custom Tagger (4.3) are based on.

This chapter does not claim to provide a complete introduction to the above-mentioned topics. For
a more thorough introduction to Machine Learning Frochte [6] and Goodfellow, Bengio, and Courville
[8] are recommended. For musical motivated Machine Learning Pons et al. [14], Pons and Serra [15],
and Purwins et al. [16] are recommended.

2.1 Classification Tasks

Classification tasks try to learn a function f : X → Y , where X is the set of features and Y is
a discrete set of classes. The function f is learnt by feeding a model with a set of training data
D = (x1, f(x1)), ..., (xn, f(xn)) with exemplary datapoints and their target values. Classification tasks
are therefore categorized as supervised learning problems [6].

A classification problem can further be subdivided into binary and multi-class classifications, where
binary models classify data into two groups, whereas multi-class models classify data into n groups.

Musical classification or tagging tasks work in the audio domain and try to provide models to
automatically assign a given set of classes to a provided set of sounds. To implement audio tagging
models, the provided audio data needs to be transformed into a pre-defined feature representation
which fits the models design. The following section presents the most common feature representations
for audio data.

2.2 Feature Representation of audio signals in Machine Learning

Feature extraction methods in the audio domain are mostly based on representations of the signal in
abstract domains like filtered spectral components or cepstral components. Raw audio waveforms are
rarely used and thus the following sections give an introduction into the most common methodologies,
namely melspectrograms, MFCCs and normalized MFCCs [16].

Melspectrogram The first step is to take Short Time Fourier Transformations (STFT) of a given
audio signal with a given window size and an overlap. The single bins are then taken and further
transformed, using the Mel-scale with the formula:

Z = 1127 · ln(1 + f

700
), (1)

as formulated by Stevens, Volkmann, and Newman [20]. The Mel-scale is a methodology developed
to approach the problem of the logarithmic nature of the human auditory system. Frequencies in

4

the lower spectrum tend to be easier to differentiate than frequencies on the higher spectrum [20].
The filtering process using equation 1 also results in a reduction of features. The resulting signal
representation is called a melspectrogram [12].

Figure 1 shows an exemplary melspectrogram of a piano, playing the chromatic C Scale.

Figure 1: Melspectrogram of piano playing chromatic C scale

One can clearly observe the base frequency of the notes as most prominent in the figure, while the
harmonics are decrease in level with increasing frequency.

Mel Frequency Cepstral Coefficients (MFCC) The most common feature extraction method
in the audio domain are MFCCs introduced by Furui [7] which are “magnitude spectra projected to
a reduced set of frequency bands, converted to logarithmic magnitudes, and approximately whitened
and compressed with a discrete cosine transform (DCT)” [16].

The main purpose of using the MFCC is to further reduce the number of features required to
represent an audio signal. Furthermore, the melspectrogram creation process creates correlations
between adjacent frames because of using overlapping STFT windows. The application of a DCT
decorrelates the feature vectors. This makes MFCC suitable for application for models which rely on
the usage of covariance matrices [12]. Figure 2 shows the resulting MFCCs after performing a DCT
on the melspectrogram displayed in Figure 1.

Figure 2: MFCC of a piano playing chromatic C scale

5

One can clearly see that the representation of the audio signal is different. The MFCC displays the
spectral envelope of the signal and drops information on fine grained spectral structures [1].

Cepstral mean and variance normalization (CMVN) When a model is presented with noisy
data, the performance of the model can quickly degrade, as Droppo and Acero [5] have shown. To
overcome these factors, the MFCC features can be normalized by mean and variance.

For the mean normalization each normalized feature vector x̂n is retrieved by subtracting the mean
vector µx from each feature vector xn. For the variance normalization the mean normalized feature
vector is taken and divided by the standard deviation of the vector [5]. After applying the CMVN, the
mean of the cepstrum is 0 and the variance is 1. This leads to robustness against signal distortions
(e.g. room accoustics, microphone transfer functions), source variability and the presence of additive
noise Droppo and Acero [5]. Figure 3 shows the CMVN MFCC feature vector computed from the same
audio file of figure 1 and 2.

Figure 3: MFCC with CMVN applied of a piano playing chromatic C scale

2.3 MUSICNN

MUSICNN is a set of pre-trained musical motivated neural networks for audio tagging. One model is
trained on the MagnaTagATune (MTT) dataset by Law et al. [11]. Another two models are trained
on two different versions of the Million Song dataset (MSD) by Bertin-Mahieux et al. [3]. Those
three models are trained on MTT and MSD, besides that the library also provides vgg-like models for
validation purposes [15]. Figure 4 shows the network structure.

Figure 4: MUSICNN network structure, taken from Pons and Serra [15]

One can observe that the network takes a three second long melspectrogram with 96 filter banks as
input and feeds those into a Convolutional Neural Network (CNN). The resulting front-end features

6

are then fed into several dense layers before passing a temporal pooling layer which is fed into a Deep
Neural Network (DNN). The DNN then outputs the resulting taggram.

The main goal of the library is to provide a pre-trained multilabel classifier which can predict the
top n tags of a given song. Additionally, the library is also aimed at feature extraction, allowing for
access of all intermediate representations from within the model and also for transfer learning (which
will be further treated in section 2.4) to use the pre-trained model as a basis for adaption to specific
use cases [15].

2.4 Transfer Learning

Transfer Learning is a methodology in Machine Learning which is often applied when sufficient data is
unavailable. The idea behind the concept of Transfer Learning is not to rebuild models from scratch
when the underlying feature-distribution changes, but instead utilize acquired past knowledge to solve
the new task [18].

Therefore, a pre-trained model from a related domain is chosen, and a new model is created by
modifying the pre-trained model, which leverages the existing knowledge i.e. features and trained
weights to adapt to a new task [13]. The main idea of Transfer Learning is to remove the last layers of
the given base network, freeze the weights and use the base model as a feature extractor for a domain
specific model which is then trained on available data [18].

2.5 Recommendation Systems

Recommendation Systems (RS) are one of the most common use cases of Machine Learning in the
modern web. They describe methodologies to provide suggestions which could be of interest to a
specific user. The applied techniques for a given problem are specifically tailored to the actual domain
[17].

Recommendations are often highly personalized, resulting in a wide variety of suggestions between
different users of the same system. There are, however, also non-personalized recommendations al-
though these are normally not tackled by recommendation systems research [17]. RSs propose ranked
lists of item suggestions which are based on explicit user actions (e.g. ratings) or implicit user actions
(e.g. time spent interacting with items of a specific type).

To propose useful information to a user, a RS must predict whether a specific item shall be rec-
ommended or not, based on available data. Burke [4] and Ricci, Rokach, and Shapira [17] distinguish
between six different methodologies, which vary in addressed domain, used knowledge and utilised
recommendation algorithms:

1. Content-Based:

• Items are proposed, based on the similarity to favorite past items of a user.

• Different similarity measures can be used, based on the items features.

2. Collaborative-Filtering

• Recommends items to a user which have been liked by different users with similar behavior.

7

• Similarity is calculated between different users, based on their item interactions in the past.

3. Demographic:

• Items are recommended based on the demographic profile of the user.

4. Knowledge-Based:

• Recommends items, based on domain knowledge.

• Users needs are evaluated and in a second step items are matched to personal user require-
ments.

5. Community-Based:

• Items are recommended based on preferences of the user friends. As Sinha and Swearingen
[19] have shown, users are more likely to rely on items recommended by friends than on
unknown individual recommendations.

6. Hybrid Approaches:

• Hybrid Approaches try to combine different already mentioned techniques to overcome
shortcomings of single approaches.

2.6 k-Nearest Neighbor (k-NN)

The k-Nearest Neighbor classifier is a lazy learning algorithm. This means that most part of the
computational work is done in the prediction step and not in the training stage like it is the case for
eager learners [6]. This already makes clear that the k-NN algorithm has one drawback in contrast to
eager learning algorithms - predictions usually take longer. The advantage of lazy learners is, however,
that a model can be built locally around the feature vector at prediction time. Other advantages of
the k-NN are, that the required training time is much shorter, which speeds up the development time
of such a model. In addition a k-NN also has nearly no parameters. The only parameter required is
k, which depicts how many datapoints from the ground truth set shall be considered in the prediction
step [6].

A k-NN works by calculating distance measures around the feature vector to be classified. For this
purpose the k nearest points are taken into account and the class which occurs the most determines
the models output. Figure 5 shows an example of the prediction step of a k-NN classifier. The red
point needs to be classified. When choosing k = 3, the point gets classified as Class 2. In contrast
to this, the point gets classified as Class 1 when choosing k = 7. This already shows a difficulty
when determining the correct value of k. On the one hand the model is sensitive to noise and local
fluctuations (overfitting) when k is too low. On the other hand the model is sensitive to underfitting
issues when k is too large. Thus, choosing the right value for k highly affects the model performance
[2].

8

Figure 5: k-NN example

9

3 Development Environment

For the development environment a highly modularized approach was taken. The code editor chosen
was Visual Studio Code, which offers an Extensions for developing inside Docker Containers. This
results in a portable development environment, which has to be set up once and then can be executed
in different environments.

To allow the usage of Nvidia graphics cards, the Nvidia Container Toolkit is utilized. This allows
to share a graphic card with the development container, and thus allow to train tensorflow models
on GPU, which speeds up training time. To set the development environment up, the following steps
need to be taken:

1. Download and install Docker2

2. If Nvidia-GPU is available: Download and Install the Nvidia Container Toolkit3

3. Download and install Visual Studio Code4

4. Download and install the Extension: Visual Studio Code Remote - Containers5

2Docker
3Nvidia Container Toolkit
4VS Code
5Visual Studio Code Remote - Containers

10

https://docs.docker.com/get-docker/
https://github.com/NVIDIA/nvidia-docker
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers

4 Drumsample Models

The created Machine Learning models form the basis for the implemented distributed drum sample
manager. The following sections will introduce a dataset which was curated for training models on
drum sounds, a basic drum classifier and both a recommendation system and a custom drum classifier,
based on a k-NN approach.

4.1 Drumsample Dataset

To be able to train a model on drum sounds at first, sufficient data needed to be collected. To
achieve this, a bot was written, which automatically downloaded all sounds from freesound.org with
the following tags: Kick, Snare, Hat, Ride, Crash and Tom. Because the sounds on freesound.org are
normally tagged by the users, the downloaded data was audited and cleaned. Figure 6 shows a barplot
of the distribution of class labels after cleaning the data.

Figure 6: Imbalanced Dataset

One can observe that the data is highly imbalanced. Because imbalanced datasets lead to poorer
overall model performance, the data had to be rearranged into a new class scheme [21]. Ride, Crash and
Hat sounds typically tend to have a similar spectrum. Because Ride and Crash had the least amount
of sounds, Ride, Crash and Hat were merged to the class Cymbal, with every subgroup, contributing
with an equal amount of sounds. After that, the cardinality of all classes was analyzed again for every
class the number of sounds was limited to 1500 sounds. In a last step, the dataset was split into train-,
validation- and test-data with randomly chosen samples. The split chosen was 66.6% training data,
16.6% validation data and 16.6% test data. Figure 7 shows the final data distributions of all three
sets. The Drumsample Dataset can be accessed via Google Drive6.

6Drumsample Dataset

11

https://drive.google.com/drive/folders/11NIT41fifE137b3EvStFIH-1uN_vAEFl?usp=sharing

Figure 7: Balanced Dataset

4.2 Drumsample Tagger

The Drumsample Tagger is based on the MUSICNN model (described in section 2.3) which was trained
on the MTT dataset. The next sections will describe how the model was modified to tackle the task
of drum sound tagging rather than tagging musical genres. As a basis for the model implementation a
tensorflow.keras implementation was used7. The code for the classification model can be found on
Github8.

4.2.1 Model Structure

The approach for the Drumsample Tagger was to take the basic MUSICNN model, trained on the
MTT dataset, and then apply a Transfer Learning approach to use the MUSICNN model as a feature
extractor. Therefore the penultimate and ultimate layer of the base model have been removed and all
remaining model weights were frozen. Table 1 shows the architecture of the final Drumsample Tagger
model, where b depicts the batch size.

Operation Input Shape Output Shape

Input (b, 187, 96, 1) (b, 187, 96, 1)
Modified MUSICNN model (b, 187, 96, 1) (b, 200)

Dropout (b, 200) (b, 200)
Dense (b, 200) (b, 200)
Dense (b, 200) (b, 5)

Table 1: Drumsample Tagger Architecture

The input layer feeds melspectrogram representation of audio data into the model which should
have a minimum length of three seconds and 96 mel bands. When a sound is shorter than three

7musicnn_keras
8Drumsample Tagger Code

12

https://github.com/Quint-e/musicnn_keras
https://github.com/NiklasWan/DrumsampleTaggerTrain

seconds, zero padding is applied to fit the minimum length. When a sound, however, is longer than 3
seconds, it is split into chunks of three seconds and the model is fed with a batch of successive audio
frames.

After passing the input, the batch is fed into the pruned MUSICNN model for feature extraction,
before being passed to the Dropout layer to minimize the chance of overfitting [9]. Finally the batch is
passed to two fully connected Dense layers, where the last one represents the final output. After that,
the mean over the Maximum Likelihood of classes is calculated and the maximum of this calculation
determines the final model output.

4.2.2 Training and Model Selection

For the training process, the model was trained using an Adam optimizer with a learning rate lr = 0.001

and a Categorical Crossentropy loss function. The model was trained for 50 epochs with a batch size
of b = 32, where for every epoch a checkpoint of all models weights was saved. Figures 8 and 9 show
the model accuracy and loss on both, the training and the validation set.

Figure 8: Model Accuracy on training and validation data

Figure 9: Model Loss on training and validation data

One can clearly see that the accuracy and loss on the training set is improving on every epoch
iteration, while both metrices are quite stable in their behavior on the validation set after the first

13

five epochs. The model shows no signs of overfitting in general, thus being an indicator of an overall
good generalization performance. Looking at all epoch values for accuracy and loss, one can observe
that epoch number 27 seems to be the best performing model on the validation set with an accuracy
of 93.52% and an overall loss of 0.1653, making the model state during that stage a candidate for
deployment. To examine the generalization performance of the model more thoroughly, section 4.2.3
investigates the model performance on the test set.

4.2.3 Validation

To examine the model performance, firstly the accuracy and loss of all model snapshots made through-
out the single epochs are tested against the test set to determine the model which generalizes best on
this unseen data. Figures 10 and 11 show the accuracy and loss of the single epoch snapshots on the
test set respectively.

Figure 10: Model Accuracy on test data

Figure 11: Model Loss on test data

Looking at both figures one can clearly see that the model at epoch 27, while performing best on
the validation set, also performs best on the test set with an accuracy of 93.44% and an overall loss of
0.1654. Because this model shows the best generalization, it will be further evaluated.

Figure 12 shows the confusion matrix for the test set.

14

Figure 12: Drumsample Tagger Confusion Matrix

It can be seen that overall predictions seem to fit the ground trouth. However, one can observe
that some sounds seem to be hard to distinguish for the model. Those combinations seem to be Kick
and Tom, Tom and Snare and to some extent Cymbal and Snare. This also seems to go well with the
observation that the timbre of those classes of sounds can be quite similar. For example, tom- and
kick drums both tend to have some overlapping characteristics sometimes.

When feeding the model with unexpected data, it also has difficulties in recognizing those as
unexpected. Because of that, a mechanism was implemented which is described in 4.4, to tag sounds
below a specific threshold as unknown.

4.3 k-NN based Custom Tagger and Recommendation System

The custom Tagger and the RS both built upon the same concept. Both are using a k-NN approach
with cepstral mean and variance normalized MFCCs. The system is described in the following sections.

4.3.1 Feature Selection

Both, the custom tagger and the RS are fed with cepstral mean and variance normalized MFCCs. Thus
audio files are first transformed into MFCCs with 20 coefficients per frame. Thereafter, the CMVN
described in section 2.2, is applied to the MFCCs to decrease unwanted distortions and additive noise
effects. Those features are then stored to disk, to be accessible when the model requires the feature
vector at prediction time. This speeds up prediction time of the k-NN as CMVN MFCC feature vectors
just have to get computed once. Because sounds could be of different length, the shorter one of two
compared sounds will be adjusted by zero padding to fit the other sound. This allows the usage of
distance metrics like euclidean- or cosine distance.

4.3.2 Custom Tagger Structure

The custom Tagger works with a dictionary which holds sounds and related custom tags which were
applied by the user. The current implementation allows every sound to have one custom tag. To

15

calculate custom tags for a given library, the cosine distance between custom tagged sounds and all
other sounds is calculated. All sounds which lie within a pre-defined range to the custom tagged
sounds will be assigned the relating labels. The whole process will be further explained when the
implementation of the custom tagger is discussed in section 4.4.

4.3.3 Recommendation System Structure

The RS, like the custom tagger, is also based on a k-NN approach. Because just the taste of the current
user shall be considered, a content-based RS approach was chosen here. This allows the system to
recommend sounds, which are similar to previous sounds the user already liked. Further modifications
could be to add a collaborative-filtering approach to the RS. This would allow considering sounds
which were liked by different users.

The similarity between sounds in the RS is measured using the cosine distance. The system then
returns the n most similar sounds to the user, where n is an arbitrarily chosen number.

4.4 Model Package Implementation

To allow for better modularization of the code, the model library was built as a Python Wheel library.
This allows for quick distribution and installation of a package via the Python Package Manager
pip. The library code can be found on Github9. To install the library, the Wheel file from the
repository can be installed via pip install drumsamp_models-1.0-py3-none-any.whl. The package is split into
the submodules tagger (Drumsample Tagger), ctagger (Drumsample Custom Tagger), recommender
(Drumsample Recommender) and utils.

The utils module contains the code required for the pre-processing of audio files. The tagger module
contains the code for automatically tagging the sounds of a given Drumsample library. The code of
the Drumsample Tagger is based on the actual implementation of Pons and Serra [15] and on the
musicnn_keras library10. The ctagger and the recommender modules contain the code for the custom
tagger and the RS. The following paragraphs explain the functionality and usage of all modules with
examples.

Drumsample Tagger Example An exemplary use case of the tagger is shown in listing 1. To create
the the melspectrograms for a given sample library, the utils.save_classification_batches_to_disk() (line
9) function has to be called. When the spectrograms are computed, a prediction can be made by calling
tagger.predict_tags_on_computed_mel() (line 14). The function tagger.predict_tags_on_computed_mel() also
has a possible second parameter, which is called unknown_threshold. The default value of the threshold
is set to 0.6 and it determines the minimum likelihood the model needs to predict a certain class. If
no likelihood passes the threshold, a sound is classified as unknown.

1 from drumsamp_models import utils , tagger
2 from pathlib import Path
3

4 audio_files = Path(’./ Sample_Lib/’).glob(’**/*. wav’)
5 audio_files = [str(f) for f in audio_files]

9Drumsamp Models Package
10musicnn_keras

16

https://github.com/NiklasWan/DrumsampModels
https://github.com/Quint-e/musicnn_keras

6

7 classification_path = ’./ classification_batches ’
8

9 utils.save_classification_batches_to_disk(audio_files , classification_path)
10

11 classification_files = Path(’./ classification_batches ’).glob(’**/*. npy’)
12 classification_files = [str(f) for f in classification_files]
13

14 result = tagger.predict_tags_on_computed_mels(classification_files)
15

16 print(result)

Listing 1: Drumsample Tagger Example

Custom Tagger Example The usage of the custom Drumsample Tagger can be found in listing
2. When the recommendation batches have been successfully pre-processed (line 9), the ctagger.

get_custom_tag_nearest()(line 23) function can be called for each successive file, where a custom predic-
tion is required. When the distance is within the range of cosine_dist_thresh = 0.002 to one of the
custom tagged files, the custom tag is applied to the sound. Notice that for the current implementation
the maximum number of tags is one. The custom tags are passed as a dictionary with the filename as
key and the custom tag as value (line 13-19).

1 from drumsamp_models import utils , ctagger
2 from pathlib import Path
3

4 audio_files = Path(’./ Sample_Lib/’).glob(’**/*. wav’)
5 audio_files = [str(f) for f in audio_files]
6

7 recommendation_path = ’./ recommendation_batches ’
8

9 utils.save_recommendation_batches_to_disk(audio_files , recommendation_path)
10

11 recommendation_files = Path(’./ recommendation_batches ’).glob(’**/*. npy’)
12 recommendation_files = [str(f) for f in recommendation_files]
13 custom_tag_dict = {
14 ’file_name1 ’: ’custom_tag1 ’,
15 ’file_name2 ’: ’custom_tag1 ’,
16 ’file_name3 ’: ’custom_tag1 ’,
17 ’file_name4 ’: ’custom_tag2 ’,
18 ’file_name5 ’: ’custom_tag2 ’,
19 }
20

21 result_dict = {}
22 for file in recommendation_files:
23 custom_tags = ctagger.get_custom_tag_nearest(file , custom_tag_dict , 0.002)
24 result_dict[file] = custom_tags
25

26 print(result_dict)

Listing 2: Custom Drumsample Tagger Example

17

Drumsample Recommendation Example An example of the RS usage can be found in listing
3. Here, we also have to pre-compute the recommendation batches and save them to disk (line 9).
Note that this only has to be done once per sample library for both, the RS and the custom tagger.
To retrieve a list of recommendations, the recommender needs the number of recommendations to
output, in this case eight, a list of favored files from a given user, the path to the pre-computed
recommendation batches and a flag indicating if the favorite files are contained in the library, to
exclude them for recommendation.

1 from drumsamp_models import utils , recommender
2 from pathlib import Path
3

4 audio_files = Path(’./ Sample_Lib/’).glob(’**/*. wav’)
5 audio_files = [str(f) for f in audio_files]
6

7 recommendation_path = ’./ recommendation_batches ’
8

9 utils.save_recommendation_batches_to_disk(audio_files , recommendation_path)
10

11 recommendation_files = Path(’./ recommendation_batches ’).glob(’**/*. npy’)
12 recommendation_files = [str(f) for f in recommendation_files]
13

14 recommendations = recommender.get_n_most_similar_sounds_mult (8, <
list_of_favorized_files_from_lib >, ’./ recommendation_batches ’, True)

15

16 print(recommendations)

Listing 3: Drumsample Recommendation Example

18

5 System Design

The system follows a basic client-server architecture with the server running the FLASK backend which
communicates with an SQLite-database and the frontend, which is a single page web application built
using the Angular framework. The following sections introduce the whole system architecture while
describing the implementation of the single components and the communication between them. Both,
the frontend11 and the backend12 code can be found on Github.

5.1 System Overview

Figure 13: UML Deployment Diagram

Figure 13 shows an overview of the system architecture. The backend server runs a docker execution
environment. Inside the docker environment, both the Flask REST-API and the SQLite database,
are executed. The SQLite database is accessed via the SQLAlchemy Python ORM API13 to allow for
possible changes of the underlying database with minimum amount of code refactoring when required.
Another external library which is accessed is the drumsamp_models package, which was described in
section 4.4.

It can also be seen that the Angular application is served via a second server for production
purposes which also runs a docker environment to execute the app. For development purposes both,
the backend server and the frontend server, are running on the same machine. When a user accesses
the Drumsample Page, a HTTP-GET request is made to receive the page from the frontend server.
After serving the frontend to the browser, the user can start to interact with the application. While
accessing data resources, the frontend application sends Asynchronous JavaScript and XML (Ajax)
requests to the backend server to retrieve the required resources.

11Drumsampler Frontend
12Drumsampler Backend
13SQLAlchemy

19

https://github.com/NiklasWan/DrumsamplerFrontend
https://github.com/NiklasWan/DrumsamplerBackend
https://www.sqlalchemy.org/

5.2 Database-Model

Figure 14: Database Structure

Figure 14 shows the implemented database model which holds all user specific data on the backend.
As one can observe, the database holds five tables in total. The user table stores the user specific data
and has a 1 : N relation to the samplelibrary table, meaning a user can own multiple soundlibraries.
Each library can hold multiple samples, which is modeled by a 1 : N relationship between the tables
samplelibrary and sample. Because each sample can have multiple tags associated to them and each
tag can be associated with multiple samples, a N : M relationship between the sample table and the
tag table is required. This is done by holding the sample_id and tag_id in the sample_tags table.

The implementation of the models can be found in the backend code repository in the file ./mod-
el/Model.py.

5.3 User-Authentication

For the user authentication process JSON web tokens (JWT), as introduced by Jones, Bradley, and
Sakimura [10] are issued when the user provides a valid email and password combination. When a user
first registers for the application, a POST request with the content type Content-Type: application/x-

www-form-urlencoded is issued to the REST-API endpoint /register with a chosen email and password
combination. The backend then hashes the password chosen by the user and saves the data to the
database. When the data has been successfully written to the database a JWT is constructed, which
holds the usermail as payload and expires 30 days after creation. This token is transferred back via
the response body.

When a user is already registered and wants to access a protected resource or his JWT expired,
he first has to login sending, a Content-Type: application/x-www-form-urlencoded request to the /login

endpoint providing the correct email and password combination. When the combination is valid, a
JWT will be constructed and transferred in the response body.

The issued JWT has to be provided by all following requests to protected resources via the HTTP
Authorization Bearer Header, setting the header to: Authorization: Bearer <issued token>.

20

5.4 REST-API

The REST-API controls the access to all resources saved in the database and delegates the model
computations to the drumsamp_model. Appendix A shows the UML component diagram of the
backend with all provided endpoints which are offered as interfaces. Appendix C displays all possible
endpoints, which HTTP methods including content type and request data format they accept, and
finally shows how the response data is formatted and encoded.

The endpoints /register and /login were already described in section 5.3, thus this section expounds
the remaining endpoints. As all remaining endpoints are working with user specific data, all endpoints
are protected and need to be accessed, providing the issued JWT via the HTTP Authorization Headers
as explained in section 5.3.

When a user wants to list all created libraries, the frontend sends a GET request to the endpoint
/get/libraries with no further request data added. The backend replies with a JSON array of strings
which include the names of all libraries created by a user.

When a user decides to access a specific library, the /get/library/<lib_name> endpoint is used. The
<lib_name> placeholder is the last path component of the endpoint and a valid library name has to be
specified here. When the name is valid a JSON object, a response will be transferred back to the
client, containing the library name and a list of all included sounds with the accompanying metadata
added. When the name is invalid, however, the server will respond with the HTTP status code 400.

When a user creates a new library, three successive endpoint calls are made by the frontend. The
first call is the POST request to /upload/<lib_name>. The <lib_name> placeholder specifies the new library
name and the file parameter sent with content type Content-Type: application/x-www-form-urlencoded

represents a file which is saved to the backend. When the library is not existent, a folder is created
with the library name and the user id appended. For uploading multiple files the given endpoint has
to be called for every file. Note that currently the only supported audio format is .wav. When this
process is finished, the /analyze/<lib_name> endpoint is called. This starts the analysis process for the
classification and recommendation pre-processing stage. Depending on the amount of audio files in
the library, the analysis can take some time. When all files have been analyzed, the frontend sends
the request to compute all tags with the Drumsample tagger. The endpoint called is /tags/<lib_name>,
which invokes the classification model while saving all results to the database and responding to the
client with the same formatted output as for the already described /get/library/<lib_name> endpoint.

For receiving recommendations based on liked sounds by the user a POST request to the /

samplefavorite/update/<lib_name>/<sample_name> endpoint has to be issued. The request payload needs
to be JSON encoded and needs to contain an array of JSON objects with the property name set to
a favorited filename. The response of the request is JSON encoded and contains an array of JSON
objects with the given filename of a sound which could be of interest to the user.

To apply custom tags to a given library, a POST request to the /usertags/<lib_name> endpoint
has to be sent. The content type needs to be Content-Type: application/JSON and the data sent has
to be an array of objects containing the name for a given file and an array of the assigned custom
tags. After computing the result on the backend using the drumsamp_models package, a response is
sent containing a dictionary with filenames as keys and the list of custom tags as values. Note that
although the request contains a list of custom tags, solely the first element of the array is considered.

21

This limitation is set by the drumsamp_models package.
The last two requests are both PUT requests and modify an existing sample in the library. To

modify the tags of a given sound a request to the endpoint /sampletag/update/<lib_name>/<sample_name>,
containing the library and the sample name has to be made. The request data has to be a JSON
object, containing all tags of the given sounds formatted as displayed in Appendix C. To modify if
a sound is favored a request to the endpoint /samplefavorite/update/<lib_name>/<sample_name> has to be
issued. The request data has to include a JSON object, containing a flag indicating if the sound is
favored by the user or not.

5.5 Frontend

The frontend is the component which is directly in interaction with the user and which is the starting
point for all communication to the backend. Appendix B shows the UML component diagram of the
frontend application. All components in the diagram relate directly to a user interface component of
the system and every component has a service related to it which acts as a layer to handle the business
logic and can be seen as the interface to the backend. Therefore, the application follows the design
principles defined by the Angular Framework14. One special service is the AppStateService, which is
injected into every component and which holds the complete state of the application. All other services
are solely handling requests to the backend, while providing observable data structures for the relating
view components to listen for backend responses.

14Angular Architecture

22

https://angular.io/guide/architecture

6 Conclusion and Limitations

During the course of the project, a working prototype of a distributed drum sample manager was
built which utilizes machine learning methods to achieve the task of automatically tagging audio data.
Therefore, a dataset was collected that contains 7500 drum sounds split equally over the 5 classes
Kick, Snare, Cymbal, Tom and Drumloop. This dataset was then used to train a classifier based on the
MUSICNN models and achieves an accuracy of 93.44% on the test data. To allow users to customize
drum sound tags and let a model adapt to those tags, a k-NN approach was chosen that is also utilized
for the RS.

All created models were implemented in the drumsamp_models package which can be installed via
the pip package manager. The resulting library was then used to create a distributed drum sample
manager which follows a basic client server architecture. The application allows a user to utilize
machine learning technologies to automatically create arbitrary drum sound libraries, tag all sounds
automatically into the classes Kick, Snare, Cymbal, Tom, Drumloop and Unknown, create custom
tags, let the model apply those to the rest of samples, and to retrieve recommendations based on user
history.

Despite all achievements during the project, the models and the resulting application still have
some limitations which can be addressed in future research. Those limitations include:

• The only supported audio format is wave.

• Users can apply only one custom tag to a given sound.

• JWT authentication and Flask Backend are not ready for deployment, as some security best
practices have not been applied because this was beyond the scope for this work.

• User recommendations are not saved to the database, and thus have to be recomputed for every
request.

• If a library is fed with new sounds or sounds are renamed, the system currently has no chance
in reacting to those circumstances.

• When a dataset becomes large, tensorflow has memory allocation problems

23

References

[1] T. Bäckström. Cepstrum and MFCC - Introduction to Speech Processing - Aalto University Wiki.
url: https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC (visited on 07/09/2021).

[2] A. Band. How to find the optimal value of K in KNN? | by Amey Band | Towards Data Science.
url: https://towardsdatascience.com/how-to-find-the-optimal-value-of-k-in-knn-
35d936e554eb (visited on 07/10/2021).

[3] T. Bertin-Mahieux et al. “The Million Song Dataset”. In: Proceedings of the 12th International
Conference on Music Information Retrieval (ISMIR 2011). 2011.

[4] R. Burke. “Hybrid Web Recommender Systems”. In: The Adaptive Web: Methods and Strategies
of Web Personalization. Ed. by P. Brusilovsky, A. Kobsa, and W. Nejdl. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 377–408. isbn: 978-3-540-72079-9. doi: 10.1007/978-3-
540-72079-9_12. url: https://doi.org/10.1007/978-3-540-72079-9_12.

[5] J. Droppo and A. Acero. “Environmental Robustness”. In: Springer Handbook of Speech Pro-
cessing. Ed. by J. Benesty, M. M. Sondhi, and Y. A. Huang. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 653–680. isbn: 978-3-540-49127-9. doi: 10.1007/978-3-540-49127-9_33.
url: https://doi.org/10.1007/978-3-540-49127-9_33.

[6] J. Frochte. Maschinelles Lernen: Grundlagen und Algorithmen in Python. ger. 2., aktualisierte
Auflage. München: Hanser, 2019. isbn: 978-3-446-45996-0.

[7] S. Furui. “Speaker-independent isolated word recognition based on emphasized spectral dynam-
ics”. In: ICASSP ’86. IEEE International Conference on Acoustics, Speech, and Signal Processing.
Vol. 11. 1986, pp. 1991–1994. doi: 10.1109/ICASSP.1986.1168654.

[8] I. Goodfellow, Y. Bengio, and A. Courville.Deep Learning. http://www.deeplearningbook.org.
MIT Press, 2016.

[9] G. E. Hinton et al. Improving neural networks by preventing co-adaptation of feature detectors.
2012. arXiv: 1207.0580 [cs.NE].

[10] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519. http://www.rfc-
editor.org/rfc/rfc7519.txt. RFC Editor, May 2015. url: http://www.rfc-editor.org/
rfc/rfc7519.txt.

[11] E. Law et al. “Evaluation of Algorithms Using Games: The Case of Music Tagging.” In: Jan.
2009, pp. 387–392.

[12] J. Lyons. Practical Cryptography. url: http://practicalcryptography.com/miscellaneous/
machine- learning/guide- mel- frequency- cepstral- coefficients- mfccs/ (visited on
07/09/2021).

[13] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE Transactions on Knowledge
and Data Engineering 22 (2010), pp. 1345–1359.

[14] J. Pons et al. “End-to-end Learning for Music Audio Tagging at Scale”. In: ArXiv abs/1711.02520
(2018).

24

https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC
https://towardsdatascience.com/how-to-find-the-optimal-value-of-k-in-knn-35d936e554eb
https://towardsdatascience.com/how-to-find-the-optimal-value-of-k-in-knn-35d936e554eb
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-49127-9_33
https://doi.org/10.1007/978-3-540-49127-9_33
https://doi.org/10.1109/ICASSP.1986.1168654
http://www.deeplearningbook.org
https://arxiv.org/abs/1207.0580
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/

[15] J. Pons and X. Serra. “musicnn: pre-trained convolutional neural networks for music audio tag-
ging”. In: Late-breaking/demo session in 20th International Society for Music Information Re-
trieval Conference (LBD-ISMIR2019). 2019.

[16] H. Purwins et al. “Deep Learning for Audio Signal Processing”. In: IEEE Journal of Selected
Topics in Signal Processing 13.2 (2019), pp. 206–219. doi: 10.1109/JSTSP.2019.2908700.

[17] F. Ricci, L. Rokach, and B. Shapira. “Introduction to Recommender Systems Handbook”. In:
Recommender Systems Handbook. Ed. by F. Ricci et al. Boston, MA: Springer US, 2011, pp. 1–
35. isbn: 978-0-387-85820-3. doi: 10.1007/978-0-387-85820-3_1. url: https://doi.org/
10.1007/978-0-387-85820-3_1.

[18] D. (Sarkar. A Comprehensive Hands-on Guide to Transfer Learning with Real-World Applica-
tions in Deep Learning. en. Nov. 2018. url: https://towardsdatascience.com/a-comprehensive-
hands- on- guide- to- transfer- learning- with- real- world- applications- in- deep-

learning-212bf3b2f27a (visited on 07/09/2021).

[19] R. R. Sinha and K. Swearingen. “Comparing Recommendations Made by Online Systems and
Friends”. In: DELOS. 2001.

[20] S. S. Stevens, J. Volkmann, and E. B. Newman. “A Scale for the Measurement of the Psychological
Magnitude Pitch”. In: The Journal of the Acoustical Society of America 8.3 (1937), pp. 185–190.
doi: 10.1121/1.1915893. eprint: https://doi.org/10.1121/1.1915893. url: https:
//doi.org/10.1121/1.1915893.

[21] H. Tripathi. What Is Balanced And Imbalanced Dataset? | by Himanshu Tripathi | Analytics
Vidhya | Medium. url: https://medium.com/analytics-vidhya/what-is-balance-and-
imbalance-dataset-89e8d7f46bc5 (visited on 07/10/2021).

25

https://doi.org/10.1109/JSTSP.2019.2908700
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-0-387-85820-3_1
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://doi.org/10.1121/1.1915893
https://doi.org/10.1121/1.1915893
https://doi.org/10.1121/1.1915893
https://doi.org/10.1121/1.1915893
https://medium.com/analytics-vidhya/what-is-balance-and-imbalance-dataset-89e8d7f46bc5
https://medium.com/analytics-vidhya/what-is-balance-and-imbalance-dataset-89e8d7f46bc5

Appendices

A Backend Server Component Diagram

Figure 15: UML Component Diagram - Backend

26

B Frontend Server Component Diagram

Figure 16: UML Component Diagram - Frontend

27

C REST-API Endpoint Description

28

M
et
ho

d
E
N
D
P
O
IN

T
R
E
Q
-D

A
T
A

R
E
Q

C
on

te
nt
-T

yp
e

R
E
S-
D
A
T
A

R
E
S
C
on

te
nt
-T

yp
e

P
O
ST

/r
eg

is
te

r
m
ai
l:

st
ri
ng

,
pa

ss
w
or
d:

pa
ss
w
or
d

ap
pl

ic
at

io
n/

x-
ww

w-
fo

rm
-

ur
le

nc
od

ed
{t

ok
en

:
st

ri
ng

}
ap

pl
ic

at
io

n/
js

on

P
O
ST

/l
og

in
m
ai
l:

st
ri
ng

,
pa

ss
w
or
d:

pa
ss
w
or
d

ap
pl

ic
at

io
n/

x-
ww

w-
fo

rm
-

ur
le

nc
od

ed
{t

ok
en

:
st

ri
ng

}
ap

pl
ic

at
io

n/
js

on

G
E
T

/g
et

/l
ib

ra
ri

es
N
on

e
-

st
ri

ng
[]

ap
pl

ic
at

io
n/

js
on

G
E
T

/g
et

/l
ib

ra
ry

/<
li

b_
na

me
>

N
on

e
-

{l
ib

na
me

:
st

ri
ng

,
sa

mp
le

s:
{n

am
e:

st
ri

ng
,

is
Fa

vo
ri

te
:

bo
ol

ea
n,

ta
gs

:
st

ri
ng

[]
}[

]
}

ap
pl

ic
at

io
n/

js
on

P
O
ST

/u
pl

oa
d/

<l
ib

_n
am

e>
fil
e:

F
ile

ap
pl

ic
at

io
n/

x-
ww

w-
fo

rm
-

ur
le

nc
od

ed
{m

es
sa

ge
:

st
ri

ng
}

ap
pl

ic
at

io
n/

js
on

G
E
T

/a
na

ly
ze

/<
li

b_
na

me
>

N
on

e
-

{m
es

sa
ge

:
st

ri
ng

}
ap

pl
ic

at
io

n/
js

on

G
E
T

/t
ag

s/
<l

ib
_n

am
e>

N
on

e
-

{l
ib

na
me

:
st

ri
ng

,
sa

mp
le

s:
{n

am
e:

st
ri

ng
,

is
Fa

vo
ri

te
:

bo
ol

ea
n,

ta
gs

:
st

ri
ng

[]
}[

]
}

ap
pl

ic
at

io
n/

js
on

P
O
ST

/r
ec

om
me

nd
at

io
ns

/<
li

b_
na

me
>

{n
am

e:
st

ri
ng

}[
]

ap
pl

ic
at

io
n/

js
on

{n
am

e:
st

ri
ng

}[
]

ap
pl

ic
at

io
n/

js
on

P
O
ST

/u
se

rt
ag

s/
<l

ib
_n

am
e>

{n
am

e:
st

ri
ng

,
cu

st
om

Ta
gs

:
st

ri
ng

[]
}[

]
ap

pl
ic

at
io

n/
js

on
{s

tr
in

g:
st

ri
ng

s[
]}

ap
pl

ic
at

io
n/

js
on

P
U
T

/s
am

pl
et

ag
/u

pd
at

e/
<

li
b_

na
me

>/
<s

am
pl

e_
na

me
>

{t
ag

s:
st

ri
ng

}[
]

ap
pl

ic
at

io
n/

js
on

{m
es

sa
ge

:
st

ri
ng

}
ap

pl
ic

at
io

n/
js

on

P
U
T

/s
am

pl
ef

av
or

it
e/

up
da

te
/<

li
b_

na
me

>/
<s

am
pl

e_
na

me
>

{i
sF

av
or

it
e:

bo
ol

ea
n}

[]
ap

pl
ic

at
io

n/
js

on
{m

es
sa

ge
:

st
ri

ng
}

ap
pl

ic
at

io
n/

js
on

T
ab

le
2:

R
E
ST

-A
P
I
E
nd

po
in
t
D
es
cr
ip
ti
on

29

	Introduction
	Technical Background
	Classification Tasks
	Feature Representation of audio signals in Machine Learning
	MUSICNN
	Transfer Learning
	Recommendation Systems
	k-Nearest Neighbor (k-NN)

	Development Environment
	Drumsample Models
	Drumsample Dataset
	Drumsample Tagger
	Model Structure
	Training and Model Selection
	Validation

	k-NN based Custom Tagger and Recommendation System
	Feature Selection
	Custom Tagger Structure
	Recommendation System Structure

	Model Package Implementation

	System Design
	System Overview
	Database-Model
	User-Authentication
	REST-API
	Frontend

	Conclusion and Limitations
	Appendices
	Backend Server Component Diagram
	Frontend Server Component Diagram
	REST-API Endpoint Description

